Native AVP Control Method for Constant Output Impedance of DC Power Converters

Author(s):  
Jian Rong Huang ◽  
Sophia Chien-Hui Wang ◽  
Chia Jung Lee ◽  
Eddie Kuo-Lung Tseng ◽  
Dan Chen
2020 ◽  
Vol 53 (2) ◽  
pp. 13410-13417
Author(s):  
Kevin E. Lucas ◽  
Daniel J. Pagano ◽  
Douglas A. Plaza ◽  
David Alejandro Vaca—Benavides ◽  
Sara J. Ríos

Author(s):  
Emilio Tanowe Maddalena ◽  
Martin W. F. Specq ◽  
Viviane Louzada Wisniewski ◽  
Colin Neil Jones

2012 ◽  
Vol 18 (3) ◽  
pp. 243-260 ◽  
Author(s):  
Phurich Ngamkong ◽  
Pijit Kochcha ◽  
Kongpan Areerak ◽  
Sarawut Sujitjorn ◽  
Kongpol Areerak

2014 ◽  
Vol 699 ◽  
pp. 759-764
Author(s):  
Amilia Emil Hasan ◽  
Haryani Hassan ◽  
Ismadi Bugis

This paper presents the speed performance of an induction motor by using a vector control. The control scheme used is an indirect vector control for define speed command. The main focus of this research is to observe on the dynamic speed performance of the induction motor when the command speed is given to the motor. In this study, the system of indirect vector control will be built by using Matlab Simulink. In fact, the expression of exciting flux linkage and electromagnetic torque are used to create a simple embedded system which to find out the effects of flux weakening in motor while, the gain of the speed controller is 100. The result shows that the vector control method will cause immediate the motor speed response with a small electromagnetic torque ripple. Furthermore, the output mechanical torque starts to decrease when the motor speed above the base speed to maintain a constant output power operation. This paper contributes a new algorithm to analysis the system when the speed motor is higher than a base speed.


2021 ◽  
Author(s):  
Mohammadreza Vatani

AC-DC power systems have been operating more than sixty years. Nonlinear bus-wise power balance equations provide accurate model of AC-DC power systems. However, optimization tools for planning and operation require linear version, even if approximate, for creating tractable algorithms, considering modern elements such as DERs (distributed energy resources). Hitherto, linear models of only AC power systems are available, which coincidentally are called DC power flow. To address this drawback, linear bus-wise power balance equations are developed for AC-DC power systems and presented. As a first contribution, while AC and DC lines are represented by susceptance and conductance elements, AC-DC power converters are represented by a proposed linear relationship. As a second contribution, a three-step linear AC-DC power flow method is proposed. The first step solves the whole network considering it as a linear AC network, yielding bus phase angles at all busses. The second step computes attributes of the proposed linear model of all AC-DC power converters. The third step solves the linear model of the AC-DC system including converters, yielding bus phase angles at AC busses and voltage magnitudes at DC busses. The benefit of the proposed linear power flow model of AC-DC power system, while an approximation of the nonlinear model, enables representation of bus-wise power balance of AC-DC systems in complex planning and operational optimization formulations and hence holds the promise of phenomenal progress. The proposed linear AC-DC power systems is tested on numerous IEEE test systems and demonstrated to be fast, reliable, and consistent.


Sign in / Sign up

Export Citation Format

Share Document