electromagnetic torque
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 109)

H-INDEX

18
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 621
Author(s):  
Fugang Zhai ◽  
Liu Yang ◽  
Wenqi Fu ◽  
Haisheng Tong ◽  
Tianyu Zhao

This paper investigates the electromagnetic torque by considering back electromagnetic force (back-EMF) trapezoidal degrees of ironless brushless DC (BLDC) motors through the two-dimensional finite element method (2-D FEM). First, the change percentages of the electromagnetic torque with back-EMF trapezoidal degrees, relative to those of PMs without segments, are investigated on the premise of the same back-EMF amplitude. It is found that both PM symmetrically and asymmetrically segmented types influence back-EMF trapezoidal degrees. Second, the corresponding electromagnetic torque, relative to that of PMs without segments, is studied in detail. The results show that the electromagnetic torque can be improved or deteriorated depending on whether the back-EMF trapezoidal degree is lower or higher than that of PMs without segments. Additionally, the electromagnetic torque can easily be improved by increasing the number of PMs’ symmetrical segments. In addition, the electromagnetic torque in PMs with asymmetrical segments is always higher than that of PMs without segments. Finally, two ironless PM BLDC motors with PMs symmetrically segmented into three segments and without segments are manufactured and tested. The experimental results show good agreement with those of the 2-D FEM method. This approach provides significant guidelines to electromagnetic torque improvement without much increase in manufacturing costs and process complexity.


2022 ◽  
Vol 12 ◽  
pp. 141-154
Author(s):  
Abderrahmane Moussaoui ◽  
Habib Benbouhenni ◽  
Djilani Ben Attous

This article presents 24 sectors direct torque control (DTC) with fuzzy hysteresis comparators for the doubly-fed induction motor (DFIM) using a three-level neutral point clamped (NPC) inverter. The designed DTC technique of the DFIM combines the advantages of the DTC strategy and fuzzy logic controller. The reaching conditions, stability, and robustness of the DFIM with the designed DTC technique are guaranteed. The designed DTC technique is insensitive to uncertainties, including parameter variations and external disturbances in the whole control process. Finally, the designed DTC technique with fuzzy hysteresis comparators is used to regulate the electromagnetic torque and the flux of the DFIM fed by the three-level NPC inverter and confirms the validity of the designed DTC technique. Results of simulations containing tests of robustness and tracking tests are presented.


Author(s):  
Shakhboz Dadabaev

The article studies the starting modes of a synchronous electric drive of a pumping station, in direct and soft start of high-voltage synchronous motors of an irrigation pumping station of the first stage. The analysis of negative starting factors of synchronous machines is made on the basis of computer modeling of the research object. The simulation results are clearly shown for the main parameters of a synchronous electric drive, such as its rotation speed, stator currents, electromagnetic torque on the shaft, etc.


2021 ◽  
Vol 21 (3) ◽  
pp. 24-29
Author(s):  
Marek FEDOR ◽  
◽  
Daniela PERDUKOVA ◽  

In the presented work a new identification method of difficult measured internal quantities of IM, such as components of magnetic flux vector and electromagnetic torque, is proposed. Commonly measurable quantities of IM like stator currents, stator voltage frequency and mechanical angular speed are used for identification to determine a feedback effect of the rotor flux vector on vector of stator currents of IM. Based on this feedback it is also possible to identify actual value of the rotor resistance, which can alter during IM operation. This has a significant impact on precision of identified quantities as well as on master control of IM. Stability of the identification structure is guaranteed by position of roots of characteristic equation of its linear transfer function. Results obtained from simulation measurements confirm quality, effectivity, feasibility, and robustness of the proposed identification method.


Author(s):  
Mustefa Jibril

This article presents 24 sectors direct torque control (DTC) with fuzzy hysteresis comparators for the doubly-fed induction motor (DFIM) using a three-level neutral point clamped (NPC) inverter. The designed DTC technique of the DFIM combines the advantages of the DTC strategy and fuzzy logic controller. The reaching conditions, stability, and robustness of the DFIM with the designed DTC technique are guaranteed. The designed DTC technique is insensitive to uncertainties, including parameter variations and external disturbances in the whole control process. Finally, the designed DTC technique with fuzzy hysteresis comparators is used to regulate the electromagnetic torque and the flux of the DFIM fed by the three-level NPC inverter and confirms the validity of the designed DTC technique. Results of simulations containing tests of robustness and tracking tests are presented.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3097
Author(s):  
Ihor Shchur ◽  
Daniel Jancarczyk

This paper investigated an electromagnetic torque ripple level of BLDC drives with multiple three-phase (TP) permanent magnet (PM) motors for electric vehicles. For this purpose, mathematical models of PM machines of different armature winding sets-single (STP), dual (DTP), triple (TTP), and quadruple (QTP) ones of asymmetrical configuration and optimal angular displacement between winding sets were developed and corresponding computer models in the Matlab/Simulink environment were created. In conducted simulation, the influence of various factors on the electromagnetic torque ripple of the multiple-TP BLDC drives was investigated—degree of modularity, magnetic coupling between armature winding sets, and drive operation in open and closed-loop control systems. Studies have shown an increase of the electromagnetic torque ripple generated by one module in the multiple TP BLDC drives with magnetically coupled winding sets, due to additional current pulsations caused by magnetic interactions between the machine modules. However, the total electromagnetic torque ripples are much lower than in similar drives with magnetically insulated winding sets. Compared with the STP BLDC drive, the multiple TP BLDC drives with the same output parameters showed a reduction of the electromagnetic torque ripple by 27.6% for the DTP, 32.3% for the TTP, and 34.0% for the QTP BLDC drive.


Author(s):  
Yunlai Shi ◽  
Haichao Sun ◽  
Dingji Cheng ◽  
Jun Zhang ◽  
Yuyang Lin ◽  
...  

This paper presents a hybrid linear actuator using screw clamp operation principle. The actuator mainly consists of a hollow electromagnetic torque motor located between two clamping nuts, two hollow cylindrical shaped piezoelectric stacks symmetrically configured at two ends of the actuator and a feed-screw (also considered as the mover of the actuator) assembled throughout all the parts. The torque motor is symmetrically connected to two clamping nuts via two torsion coupling springs located at either end of the motor spindle. Two piezoelectric stacks can work independently to propel the opposing loads, which effectively take advantage of the anti-compression and non-tensile characteristics of piezoelectric element. The special feature of the actuator is the screw clamp mechanism, the operation of which involves intermittent rotation of two nuts (driven by the torque motor) on a feed-screw to achieve the bi-direction piezoelectric motion accumulation. Furthermore, the application of feed-screw could decrease the actuator’s sensitivity to wear, in order to realize a rigid self-locking and thus ensure the actuator’s holding capacity. A prototype was fabricated and the experimental results show that the no-load speed, maximum thrust, and peak power of the actuator were 20 mm/s, 280 N, and 1.54 W, respectively.


Electricity ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 590-613
Author(s):  
Krzysztof Bieńkowski ◽  
Michał Szulborski ◽  
Sebastian Łapczyński ◽  
Łukasz Kolimas ◽  
Hubert Cichecki

This work aimed to develop a parameterized, two-dimensional field model of a switched reluctance motor (SRM). The main task of the developed model was to calculate the value of the electromagnetic torque for various positions of the rotor. Based on these calculations, the characteristics of the electromagnetic torque were determined depending on the position of the rotor angle φ for the current function I (T = f (φ, I)). Using the model, it was possible to additionally observe the phenomena occurring in the motor winding, e.g., distributions, isolines of magnetic potential, induction, and to calculate the values of the temperature. The parameterized structural elements that made up the entire model can be freely changed and, thus, the results for various structures can be obtained. Thanks to this, it was possible to evaluate and compare motor of different designs. To validate the model, measurements were conducted on real-scale reluctance motors, and families of electromagnetic torque characteristics were obtained for various design cases. The results received from the tested motors were juxtaposed with simulation results procured via the model. Based on this comparison, it was possible to determine the accuracy of the model’s operation.


Author(s):  
Muhamad Ariff Khalid ◽  
Raja Nor Firdaus Kashfi Raja Othman ◽  
Nor Aishah Md Zuki ◽  
Fairul Azhar Abdul Shukor ◽  
Md Nazri Othman ◽  
...  

<span lang="EN-US">Brushless DC (BLDC) motor is widely used for various applications such as transportation. BLDC motor has many advantages compared to brush motor such as more compact, high robustness and simplest construction. The maintenance of this motor also low compared to brush motor due to absent of the brush inside the motor. For electric bicycle application, the conventional motor has low electromagnetic torque because not properly designed. It faces low torque density as the motor in full load condition especially during climb uphill. In this research, an optimum magnetic energy is being determine by proper selection of permanent magnet size. In addition, this research also increases the input current in dynamic condition into the designed BLDC motor. Finite element method (FEM) is used to analyze other performance characteristic of improved motor such as back electromotive force (EMF), electromagnetic torque, flux linkage, and stator flux density. Parameter for improve the current motor are selected and varied based on the required specification. In conclusion, the research proposed the new motor specification that has highest electromagnetic torque of brushless DC motor. Finally, this research provides guidelines, suggestions and proposes a better improved structure in optimize the magnetic energy in BLDC motor.</span>


Author(s):  
Ahlam Luaibi Shuraiji ◽  
Buraq Abdulhadi Awad

<p><span lang="EN-US">Interior permanent magnet motors (IPMMs) have been increasing in popularity, since the emergence of permanent magnet material with high energy products, i.e. rare earth permanent magnet material. This paper analyses the performances of IPMMs having different rotor iron pole shapes including eccentric, sinusoidal and sinusoidal with 3th order harmonic injected rotor pole arc shapes IPMMs. Cogging torque, static torque, torque ripple, torque-speed and power-speed curves of the mentioned motors have been compared. It must be noted that the mentioned motors have been designed with the same stator, PM shape and the same dimensions, in order to highlight the effect of the rotor pole arc shape on the performance of the such motors. Two-dimensional (2D) finite element analysis (FEA) has been utilized to design and analyze the mentioned machines. It has been found that rotor iron pole shape of the IPM has notably influence on the machine performance, practically on output electromagnetic torque and its ripple. The highest value of average electromagnetic torque as well as torque capability in the constant torque reign is delivered by 3th order harmonic injected rotor pole arc shapes machine, while the lowest torque ripple is obtained by the sinusoidal rotor pole arc machine.</span></p>


Sign in / Sign up

Export Citation Format

Share Document