Three-phase series active power filter without DC voltage source

Author(s):  
C. B. Jacobina ◽  
A. C. Oliveira ◽  
R. R. Matias ◽  
A. P. D. Queiroz
2014 ◽  
Vol 23 (10) ◽  
pp. 1450144 ◽  
Author(s):  
M. VIJAYAKUMAR ◽  
S. VIJAYAN

This paper proposes a photovoltaic (PV)-based three-phase four-wire (3P4W) series hybrid active power filter (SHAPF) it comprises of a series active power filter (SAPF) and an LC shunt passive filter. The proposed system eliminates both the current and voltage harmonics and compensates reactive power, neutral current and voltage interruption. A SAPF demands a source of energy for compensating the voltage sag/swell. This system introduces a new topology for SHAPF utilizes the PV with DC–DC boost converter as a source of DC power for SAPF. The compensation current reference evaluation is based on the twin formulation of the vectorial theory of electrical power theorem with fuzzy logic controller (FLC). The PV array/battery managed DC–DC boost converter is employed to step up the voltage to meet the DC bus voltage requirement of the three-leg voltage source inverter (VSI). The foremost benefit of the proposed system is that, it will provide uninterrupted compensation for the whole day. This system utilizes the renewable energy accordingly saves the energy and shares the load during the solar irradiation available. The simulation and experimental studies are carried out to validate the effectiveness of the proposed PV-SHAPF.


Author(s):  
Annu Govind ◽  
Vijay Kumar Tayal ◽  
prakash Kumar

Adaptive neural network (ANN) topology-based control is proposed in this paper for three phase three wire shunt active power filter (SAPF) application. The proposed controller improves power quality and compensates harmonic components. The system includes a current controlled voltage source inverter (CC-VSI) using three phase insulated gate bipolar transistors (IGBT), a DSP module for generating regulated pulse width modulated (PWM) pulse and reference DC bus. The increase in nonlinear load applications has raised power quality issues. SAPF has emerged as one of the best solutions to improve power quality. Application of ANN in SAPF eliminates the need for unit template generation and the tuning requirement of phase locked loop (PLL), as required in traditional SAPF. The proposed ANN based SAPF can be dynamically regulated for minimum harmonic contamination. The results were obtained and verified in Matlab/ Simulink platform.


Sign in / Sign up

Export Citation Format

Share Document