Active power deficit estimation in presence of Renewable Energy Sources

Author(s):  
Bakhtyar Hoseinzadeh ◽  
Filipe Faria Da Silva ◽  
Claus Leth Bak
Author(s):  
Carlos Cateriano Yáñez ◽  
Jörg Richter ◽  
Georg Pangalos ◽  
Gerwald Lichtenberg ◽  
Javier Sanchís Saez

As the share of renewable energy sources (RES) in distribution grids increases, several power quality challenges arise. Due to its intermittent nature, RES lead to voltage and frequency fluctuations in the grid that affect power quality. Moreover, as RES are connected via power converters, there is also a higher harmonic distortion pollution introduced by the switching power electronics involved, (Liang, 2017). A proven solution is the implementation of Active Power Filters (APF), which are able to compensate the unbalanced, harmonic, and reactive components of a load under different supply conditions. In order to achieve the desired compensation characteristics, the selection of an appropriate control strategy is critical, (Kumar & Mishra, 2016). Classic APF control strategies achieve said goals, although with struggles under changing load scenarios with limitations on their operational modes, (Weihe, Cateriano Yáñez, Pangalos, & Lichtenberg, 2018).This paper proposes the use of an advanced model-based control method, i.e. Model Predictive Control (MPC), to improve the performance of APF devices. Model-based control methods allow for better performance when the model of the plant is known before hand or through measurements, the MPC extends this further by introducing a cost function that ensures optimal operation even under constraints, (Maciejowski, 2002). References Kumar, P., & Mishra, M. K. (2016). A comparative study of control theories for realizing APFs in distribution power systems. 2016 National Power Systems Conference (NPSC), 1–6. https://doi.org/10.1109/NPSC.2016.7858905 Liang, X. (2017). Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications, 53(2), 855–866. https://doi.org/10.1109/TIA.2016.2626253 Maciejowski, J. M. (2002). Predictive Control with Constraints. Pearson education. Weihe, K., Cateriano Yáñez, C., Pangalos, G., & Lichtenberg, G. (2018, July). Comparison of Linear State Signal Shaping Model Predictive Control with Classical Concepts for Active Power Filter Design. 167–174. Retrieved from http://www.scitepress.org/PublicationsDetail.aspx?ID=QatbWGUbqSE=&t=1


Tehnika ◽  
2020 ◽  
Vol 75 (6) ◽  
pp. 749-755
Author(s):  
Stevan Rakočević ◽  
Martin Ćalasan ◽  
Tatjana Konjić

In this paper, CONOPT solver, embedded in program GAMS, is proposed for optimal power flow analysis in distribution network with renewable energy sources. CONOPT solver possibilities have been tested on IEEE 33 test system solving a problem o f minimizing active power losses in the network. Locations and sizes o f renewable energy sources were taken form available literature. The results obtained using CONOPT solver have been compared with results obtained by using metaheuristic and hybrid algorithms. It is shown that the CONOPT solver gives better results in terms o f minimum values o f active power losses.


Author(s):  
E Sarath Chandra Reddy ◽  
◽  
Ch Chengaiah ◽  

India is country with abundant solar energy availability. The annual solar energy output exceeds the total energy output of India's non renewable energy sources. As increasing installation of renewable energy sources into the grid. The fluctuations of power based on operating climate conditions like solar insulation and temperature is highly depends as it is not possible to limit such installations with time the penetration level of renewable sources will increase to meet demand with green energy. This paper proposed a flexibly power point tracking (FPPT) control of active power in photovoltaic system to achieve reserve capacity with Power Limiting Control (PLC) which will provide high stability to existing system without overloading it thus a proper integration to the grid and to mitigate adverse negative effects of high level integrations are possible with modified grid codes in stand of replacement of existing grid . Matlab/Simulink software package is used to make the model and effectiveness of the propose system is tested with Simulink environment..


Sign in / Sign up

Export Citation Format

Share Document