DC Voltage Dependent Reactive Power Promoting Control Scheme for Voltage Source Converters

Author(s):  
Chen Zhang ◽  
Xialin Li ◽  
Li Guo ◽  
Pengfei Li ◽  
Zhiwang Li
Author(s):  
Anjana Jain ◽  
R. Saravanakumar ◽  
S. Shankar ◽  
V. Vanitha

Abstract The variable-speed Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion System (WECS) attracts the maximum power from wind, but voltage-regulation and frequency-control of the system in standalone operation is a challenging task A modern-control-based-tracking of power from wind for its best utilization is proposed in this paper for standalone PMSG based hybrid-WECS comprising Battery Energy Storage System (BESS). An Adaptive Synchronous Reference Frame Phase-Locked-Loop (SRF-PLL) based control scheme for load side bi-directional voltage source converter (VSC) is presented for the system. MATLAB/Simulink model is developed for simulation study for the proposed system and the effectiveness of the controller for bi-directional-converter is discussed under different operating conditions: like variable wind-velocity, sudden load variation, and load unbalancing. Converter control scheme enhances the power smoothening, supply-load power-matching. Also it is able to regulate the active & reactive power from PMSG-BESS hybrid system with control of fluctuations in voltage & frequency with respect to varying operating conditions. Proposed controller successfully offers reactive-power-compensation, harmonics-reduction, and power-balancing. The proposed scheme is based on proportional & integral (PI) controller. Also system is experimentally validated in the laboratory-environment and results are presented here.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 506 ◽  
Author(s):  
Patrobers Simiyu ◽  
Ai Xin ◽  
Kunyu Wang ◽  
George Adwek ◽  
Salman Salman

In this research study, a multiterminal voltage source converter (VSC) medium voltage DC (MVDC) distribution network hierarchical control scheme is proposed for renewable energy (RE) integration in a co-simulation environment of MATLAB and PSCAD/EMTDC. A DC optimal power flow (DC OPF) secondary controller is created in MATLAB. In PSCAD/EMTDC, the main circuit containing the adaptive DC voltage droop with a dead band and virtual synchronous generator (VSG) based primary controller for the VSCs is implemented. The simulation of the MVDC network under the proposed hierarchical control scheme is investigated considering variations in wind and solar photovoltaic (PV) power. The network is also connected to the standard IEEE-39 bus system and the hierarchical scheme tested by assessing the effect of tripping as well as restoration of the REs. The results show that during random variations in active power such as increasing wind and PV power generation, a sudden reduction or tripping of wind and PV power, the primary controller ensures accurate active power sharing amongst the droop-based VSCs as well as regulates DC voltage deviations within the set range of 0.98–1.02 pu with an enhanced dynamic response. The DC OPF secondary control optimizes the system’s losses by 38% regularly giving optimal droop settings to the primary controllers to ensure proper active power balance and DC voltage stability. This study demonstrates that the hierarchical control strategy is effective for RE integration in the MVDC distribution network.


2015 ◽  
Vol 23 ◽  
pp. 1025-1039 ◽  
Author(s):  
Hesam RAHBARIMAGHAM ◽  
Erfan MAALI AMIRI ◽  
Behrooz VAHIDI ◽  
Gevorg BABAMALEK GHAREHPETIAN ◽  
Mehrdad ABEDI

Sign in / Sign up

Export Citation Format

Share Document