A real-time dynamic simulation tool for transmission and distribution power systems

Author(s):  
Vahid Jalili-Marandi ◽  
Fabio Jose Ayres ◽  
Esmaeil Ghahremani ◽  
Jean Belanger ◽  
Vincent Lapointe
Author(s):  
Z.Y. Xue ◽  
D.Z. Fang ◽  
J.G. Yang

A new tree structure called the two-level computation tree model is proposed for real time dynamic simulation of large-scale power systems. The features of the computation tree method are that the root node of the tree corresponds to a disconnected linear network, which is easy to be dealt with, and the tree leaf-nodes represent the partitioned subsystems. In the process of trajectory simulation, the correction factors of Newton type iteration are computed through a tree traversal procedure. One advantage of the new method is that the computation tasks for all subsystems can be carried out simultaneously using any parallel computation facilities. Case studies on the 10-generator New England test power system and on a representation of Northeast China power system verify the accuracy and validate the potential application of the proposed method in the real time contingency simulation for realistic large-scale power system.


2021 ◽  
Vol 97 ◽  
pp. 45-58
Author(s):  
Albert Peiret ◽  
Eric Karpman ◽  
László L. Kovács ◽  
József Kövecses ◽  
Daniel Holz ◽  
...  

Author(s):  
M. W. Dubetz ◽  
J. G. Kuhl ◽  
E. J. Haug

Abstract This paper presents a network based implementation of real-time dynamic simulation methods. An interactive animated graphics environment is presented that permits the engineer to view high quality animated graphics rendering of dynamic performance, to interact with the simulation, and to study the effects of design variations, while the simulation is being carried out. An industry standard network computing system is employed to interface the parallel processor that carries out the dynamic simulation and a high speed graphics processor that creates and displays animated graphics. Multi-windowing and graphics processing methods that are employed to provide visualization and operator control of the simulation are presented. A vehicle dynamics application is used to illustrate the methods developed and to analyze communication bandwidth requirements for implementation with a compute server that is remote from the graphics workstation. It is shown that, while massive data sets are generated on the parallel processor during realtime dynamic simulation and extensive graphics data are generated on the workstation during rendering and display, data communication requirements between the compute server and the workstation are well within the capability of existing networks.


Author(s):  
Clifford S. Bonaventura ◽  
Joseph W. Palese ◽  
Allan M. Zarembski

A real-time dynamic simulation system designed to identify sections of track geometry that are likely to cause unsafe rail vehicle response is discussed. Known as TrackSafe, this system operates onboard a track geometry vehicle where the geometry measurements are passed as inputs to the dynamic model of one or more rail vehicle types. In order to comprehensively analyze the effect of the existing geometry on rail vehicle behavior, the system is capable of simultaneously simulating the response of several vehicle models, each over a range of traveling speeds. The resulting response predictions for each modeled vehicle and each simulated traveling speed are used to assess the track geometry condition and to identify locations leading to potentially unsafe response. This paper presents the latest work in the development of TrackSafe, specifically, the development and testing of eight new vehicle models is presented. The new car types modeled include a box car, flat car, and both a long and short tank car. Each can be simulated in a fully loaded or empty condition. Accuracy of the models is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document