Combining LP and MIP approaches to model the impacts of renewable energy generation on individual thermal power plant operation

Author(s):  
Matthias Huber ◽  
Thomas Hamacher ◽  
Christian Ziems ◽  
Harald Weber
Author(s):  
Takeharu Hasegawa

Abstract Europe and the United States, in particular, promote the deregulation of the electric power industry in favor of renewable energy generation. With an increase in renewable energy generation, thermal power generation has been switched to standby power. Ammonia, one of the storage and transport media for H2, is produced in a highly efficient oxyfuel IGCC (integrated coal gasification combined cycle) system with CO2 capture, for the future hydrogen-using society. Using ammonia as an industrial raw material, agricultural fertilizer, and transportation fuel, energy system can be established by combining renewable energy and thermal power generation. Therefore, it is possible to simultaneously construct a thermal power supply system suitable for backup power source owing to the fluctuation of the renewable power generation and to realize improvement of availability of the thermal power plant and the load-leveling. It will be an incentive to build a future zero-emission thermal power plant. In this study, an oxy-fuel IGCC power generation co-produced with ammonia and CO2 capture is proposed. Furthermore, the features and challenges of a gas turbine that fuels CO2-free NH3 are investigated. In particular, the combustion exhaust characteristics of ammonia/oxygen fired semiclosed cycle gas turbine combustor in comparison with those of the conventional fuels are clarified through a kinetic analysis.


Sign in / Sign up

Export Citation Format

Share Document