Dynamic stability enhancement of nuclear power plants of Taiwan power system using STATCON

Author(s):  
Li Wang ◽  
Zon-Yan Tsai
2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Nicolás Alejandro Malinovsky

This work shows the introduction of the Electrical Power System Analysis (etap) software as a calculation and analysis tool for power electrical systems of the nuclear power plants (NPP) under the orbit of Nucleoeléctrica Argentina S.A (NASA). Through the use of the software, the model of the electrical power system of the Atucha II NPP was developed. To test the functionality of the modeled electrical power circuit, studies of load flow and short-circuit analysis were conducted, yielding satisfactory results, which were contrasted with the plant design values. Once the model has been validated, this will be the basis for carrying out different studies in the plant through simulation. Furthermore, with the incorporation of etap as a fundamental calculation and analysis tool for power electrical systems at the company's engineering departments, it is expected to improve the safety, operation, quality, reliability, and maintenance of both the Atucha II NPP electrical power system and the other nuclear power plants operated by Nucleoeléctrica Argentina S.A.


Author(s):  
S. Othman ◽  
H. M. Mahmoud ◽  
S. A. Kotb

The capacity of the electrical power system in Egypt will increase rapidly in the coming twenty years. In year 2018, nuclear power generation will be connecting to the Egyptian electrical grid. Consequently, the interaction of nuclear power plants and other systems becomes a very important issue, and a detailed nuclear power model for the medium-term and long-term power system stability should be developed. However, there is no nuclear unit model that can describe the detailed characteristics of the nuclear unit in the available commercial power system simulation software. In this paper, a detailed pressurized water reactor (PWR) nuclear unit model for medium-term and long-term power system transient stability is proposed. The model is implemented by a user defined program in PSS/E through PSS/E Matlab Simulink Interface. This model can be used to analyze the interaction of nuclear power plants and other power systems. The simulation results show that the proposed model is valid.


Author(s):  
Alexander Duchac ◽  
Magnus Knutsson

An open phase condition is a known phenomenon in the power industry and is now recognized to have adverse impact on the electrical power systems in several nuclear power plants. An open phase condition may result in challenging plant safety. Operating experience in different countries has shown that the currently installed instrumentation and protective schemes have not been adequate to detect this condition and take appropriate action. An open phase condition, if not detected and disconnected in a timely manner, represents design vulnerability for many nuclear power plants. It may lead to a condition where neither the offsite power system nor the onsite power system is able to support the safety functions, and could propagate to station blackout. The design of electrical power systems needs to be evaluated systematically and improved, where necessary, to minimize the probability of losing electric power from any of the remaining supplies as a result of single or double open phase conditions. The improved design should be coordinated with existing measures to ensure that the electrical power system is able to support the safety functions after the open phase condition is detected and disconnected. In this regard, the IAEA has developed a safety publication dealing with design vulnerability of open phase conditions. This paper summarizes the contents of the report, the rationale and criteria to enhance the safety of nuclear power plants by providing technical guidance to address an open phase condition vulnerability in electrical systems used to start up, operate, maintain and shutdown the nuclear power plant.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Choong-Koo Chang

In order to supply electric power to the safety related loads, safety and reliability of onsite power have to be ensured for the safety function performance in nuclear power plants. Even though the existing electric power system of APR1400 meets the requirements of codes regarding Class 1E system, there is a room for improvement in the design margin against the voltage drop and short circuit current. This paper discusses the amount that the voltage drop and short circuit current occur in the existing electric power system of APR1400. Additionally, this paper studies with regard to the improved model that has the extra margin against the high voltage drop and short circuit current by separation of unit auxiliary transformer (UAT) and standby auxiliary transformer (SAT) for the Class 1E loads. The improved model of the electric power system by separation of UAT and SAT has been suggested through this paper. Additionally, effects of reliability and cost caused by the electric power system modification are considered.


2021 ◽  
pp. 182-182
Author(s):  
Vojin Grkovic ◽  
Djordjije Doder

In the paper are presented and discussed the results of a more complex research of technology portfolio competitiveness in power systems with high penetration of i-RES. Possible technology portfolios compositions are analyzed. The portfolios comprise very high participation of i-RES, as well as a certain participation of energy storage technologies, but also and other energy technologies like nuclear and fossil fueled power plants. Within the research are developed new competitiveness indicators i.e., dispatchability indicator and the technology portfolio?s assured capacity. The latter is defined on the basis of recently published Ulrich?s and Schiffer?s paper. Obtained results point out that inclusion of pumped-hydro storage plants improves portfolio?s dispatchability. However, within the researched interval up to PHS installed capacities relative to i-RES capacities of 0,3; numerical values of the dispatchability indicators are still below their values for the portfolio without i-RES. Increased participation of nuclear power plants contribute to the improvement of numerical values of the dispatchability indicators. The sensitivity analysis for the case of two times smaller cost of pumped hydro storage capacities is also performed. Hypothetical change of power system?s technology structure in sense of substitution hard coal and lignite fired power plants with wind generators or with nuclear power plants is also analyzed. The analysis points out that the substitution with nuclear power plants enables much better results regarding power system?s ability to change the power on demand than substitution with wind generators, particularly in the countries with high participation of hard coal and/or lignite in electricity generation.


Sign in / Sign up

Export Citation Format

Share Document