power circuit
Recently Published Documents


TOTAL DOCUMENTS

630
(FIVE YEARS 150)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Роман Андреевич Иванов ◽  
Никита Владимирович Максаков

Актуальность разработки обусловлена необходимостью создания устройства для сбора и обработки информации с экспериментального стенда солнечных панелей. Назначением стенда является получение достоверных данных для верификации моделей оценки показателей гелиопотенциала, использующихся при обосновании эффективности применения солнечных электростанций на территории восточных регионов России. Дано описание основного и вспомогательного оборудования экспериментального стенда. Солнечные панели стенда разноориентированы для определения наиболее эффективного угля наклона и обоснования необходимости применения следящей за солнцем системы. Для снятия и записи мгновенной мощности солнечных панелей разработано устройство на основе микроконтроллера Arduino. Для мониторинга показаний силы тока используется шунтовый амперметр, подключаемый в разрыв цепи питания. Приведена схема счётчика тока и описана его работа. Приведены первичные результаты собранных данных. Намечены основные этапы дальнейшей обработки данных. The relevance of the presented development is due to the need to create a device to read and process information from an experimental array of solar panels. The purpose of the array is to obtain reliable data for the verification of models for estimating photovoltaic power potential indicators used in justifying the feasibility of the adoption of solar power plants in the eastern regions of Russia. We present a description of the main and auxiliary equipment of the experimental array. The array's solar panels are arranged in different ways so as to determine the most efficient tilt angle and justify the need to use a sun tracking system. The proprietary device based on the Arduino microcontroller was designed to read and write the value of instantaneous power of solar panels. To monitor the readings of the amperage, a shunt ammeter is used, which is connected to the gap of the power circuit. The study provides a diagram of the current meter and describe its operation. We outlined the main stages of subsequent data processing.


Abstract: An obvious device for the utilization of renewable energy sources is inverter and Pulse Width Modulation technique is widely used method for voltage source inverters. This paper deals with the generation of PWM signals by analog circuit, where the comparison of sine wave and sawtooth wave for the operation of power circuit takes place. The above mentioned technique is studied and verified by Simulating the circuit. The prototype of PWM based, single phase, full bridge inverter is developed and the results are verified for the nominal voltage and frequency with the help of simulation and hardware is designed. Keywords: Inverter, SPWM, VSI, Simulation, MATLAB


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 241
Author(s):  
Chenglong Li ◽  
Dahai Zhang ◽  
Weijie Zhang ◽  
Xiaodong Liu ◽  
Ming Tan ◽  
...  

This paper presents a constant-pressure hydraulic PTO system that can convert stored pressure energy into electrical energy at a stable speed through hydraulic motors and generators. A multi-chamber cylinder can be connected to the main power generation circuit by check valves, and the motor displacement can be controlled by a fuzzy controller to maintain the main power generation circuit under stable pressure. The hydraulic transformer can control the forces applied to the floater. The hydrodynamic parameters of the floater are calculated by AQWA, and the optimal PTO damping of the hydraulic system is analyzed as the target of transformer control. MATLAB/Simulink and AMESim are used to carry out the co-simulation. Three kinds of wave elevation time-series for the specific state are designed for the simulation. In the co-simulation, three approaches are carried out for the simulation including no control strategy, fuzzy control with a fixed transformer ratio, and fuzzy control with a variable transformer ratio. Under the fuzzy control with a fixed transformer ratio, the floater displacement and captured energy do not increase significantly, but the oil pressure fluctuation is very stable, which indicates that the fuzzy controller maintains the stability of the main power circuit. While under fuzzy control with a variable transformer ratio, the power generation is not larger than those under no control strategy or fuzzy control with a fixed transformer ratio, which proves that this hydraulic transformer concept is less efficient.


Author(s):  
Evgeniy Chupin ◽  
Konstantin Frolov ◽  
Maxim Korzhavin ◽  
Oleg Zhdaneev

AbstractEnergy storage systems are an important component of the energy transition, which is currently planned and launched in most of the developed and developing countries. The article outlines development of an electric energy storage system for drilling based on electric-chemical generators. Description and generalization are given for the main objectives for this system when used on drilling rigs isolated within a single pad, whether these are fed from diesel gensets, gas piston power plants, or 6–10 kV HV lines. The article studies power operating modes of drilling rigs, provides general conclusions and detailed results for one of more than fifty pads. Based on the research, a generic architecture of the energy storage module is developed, and an engineering prototype is built. The efficiency of using a hybrid energy accumulation design is proven; the design calls for joint use of Li-ion cells and supercapacitors, as well as three-level inverters, to control the storage system. The article reviews all possible options for connecting the system into a unified rig power circuit, and the optimum solution is substantiated. The research into the rig operating modes and engineering tests yielded a simplified mathematical model of an energy storage unit integrated into the power circuit of a drilling rig. The model is used to forecast the payoff period of the system for various utilization options and rig operating modes. The findings of this study can help to better understand which type of storage system is the most efficient for energy systems with temporary high load peaks, like drilling rigs.


2021 ◽  
Vol 2021 (12) ◽  
pp. 33-37
Author(s):  
Yu.M. Lankin ◽  
◽  
V.G. Solovyov ◽  
V.G. Tyukalov ◽  
I.Yu. Romanova ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8105
Author(s):  
Piotr Kacejko ◽  
Piotr Miller ◽  
Paweł Pijarski

There are several threats that require the control of the conditions of switching operations in the transmission grid. They result mainly from the negative effects of the high-value current, which may appear after the breaker is closed. Problems considering closing the power circuit breakers on a large standing phase angle (SPA) are often formulated by grid operators. The literature most often discusses the problem of SPA reduction, which allows the system to be restored without the risk of damaging the turbogenerator shafts. This reduction can be achieved by various operational solutions; most often, it is the appropriate adjustment of active power generation, sometimes backed up by partial load shedding. The subject of the presented article is a slightly different approach to the SPA problem. The method of determining the maximum value of SPA for which the connection operation allows to avoid excessive transitional torques was presented. With this approach, finding the maximum value of SPA between the two considered system nodes is treated as an optimisation task. In order to solve it, the original heuristic optimisation method described in the article was applied.


Author(s):  
Asef A. Saleh ◽  
Rakan Khalil Antar ◽  
Harith Ahmed Al-Badrani

The advantage of multilevel inverters is to produce high output voltage values with distortion as minimum as possible. To reduce total harmonic distortion (THD) and get an output voltage with different step levels using less power electronics switching devices, 15-level inverter is designed in this paper. Single-phase 11-switches with zero-level (ZL) and none-zero-level (NZL) inverter based on modified absolute sinusoidal pulse width modulation (MASPWM) technique is designed, modelled and built by MATLAB/Simulink. Simulation results explained that, multilevel inverter with NZL gives distortion percent less than that with ZL voltage. The THD of the inverter output voltage and current of ZL are 4% and 1%, while with NZL is 3.6% and 0.84%, respectively. These results explain the effectiveness of the suggested power circuit and MASPWM controller to get the required voltage with low THD.


Author(s):  
Zeynep Bala Duranay ◽  
Hanifi Guldemir

Generally, AC-AC converters are implemented using thyristors. These converters generate harmonics and have a low power factor. To eliminate these problems matrix converters (MC) are become used as AC-AC converter. Matrix converters have the capability of being used as frequency changer, rectifier, inverter and chopper. In this work, it is proposed to achieve the desired output of AC-AC Boost converter using single phase matrix converter (SPMC). The operation of single-phase AC-AC boost converter using MC is studied in this paper. The output voltage of this boost converter is higher than the AC input supply voltage. insulated gate bipolar transistors (IGBTs) are used as the switching elements in the SPMC power circuit. Sinusoidal Pulse width modulation (SPWM) technique is applied to generate switching signals to obtain the output voltage. The model of the matrix converter is constructed in MATLAB/Simulink programming software package. The behavior of SPMC is simulated with various switching frequencies. The simulation results together with harmonic spectrum and total harmonic distortion (THD) values are presented. Successful operation of boost SPMC is achieved.


2021 ◽  
Vol 2021 (4) ◽  
pp. 499-506
Author(s):  
Alexander I. CHUDAKOV ◽  
◽  
Valery O. IVASHCHENKO ◽  
Alexey P. ZELENCHENKO ◽  
Nikolay V. LYSOV ◽  
...  

Objective: The use of pulse conversion of electricity on direct-current traction rolling stock is discussed. Methods: A variant of the system for regulating the operating modes of traction motors of suburban electric trains using a pulse converter based on insulated gate bipolar transistors is described. (IGBT). Results: The proposed impulse control system is presented as a possible option for the modernization of the applied control systems, which makes it possible to improve the traction and energy indicators of suburban electric trains. The advantages of pulse converters based on IGBTs are shown in comparison with converters based on one- and two-operation thyristors. A simplifi ed electrical diagram of the power circuit of a motor car with a pulse converter is presented, a description of the operation of the power circuit in the traction mode and in the modes of rheostatic and regenerative braking is given. Practical importance: The presented results of the technical and economic comparison of the control systems of the ED4M electric train with a Современные технологии – транспорту 505 ISSN 1815-588Х. Известия ПГУПС 2021/4 contactor-rheostat control system and an electric train with regulation of the operating modes of traction electric motors by a pulse converter based on IGBT prove the best energy effi ciency of an electric train equipped with a pulse control system


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wen-Chiao Lin ◽  
Graeme Garner ◽  
Yat-Chung Tang ◽  
Arash Mohtat

With recent developments of energy efficient design and control for electric motors, electrical subsystems and components have become integral parts of main actuators in vehicle systems (e.g., steering and propulsion systems). To ensure proper vehicle operations, it is important to make sure that electrical power is properly transmitted through the power circuit from vehicle power source to the electric motor. However, degradation in the power circuit health, which often manifests itself as increased resistance, may affect power transmission and degrade the system performance. For example, in Electric Power Steering (EPS) systems, if the EPS power circuit resistance is increased and the EPS is drawing power to assist the driver, voltage at the EPS module will drop significantly, causing the EPS to reset and, consequently, Loss of Assist (LOA) incidents. Due to compliance in the steering system and suspension design, drivers often feel that the steering system is fighting back when an LOA incident occurs. While previous work has partially addressed this issue by developing algorithms that estimate resistance increase in EPS power circuits, this paper further validates and refines the algorithms for vehicle on-board and off-board implementations using test drive data collected. Since on-board and off-board implementations impose different limits on signal sampling rates, a total of 250 and 465 minutes of data are respectively collected with various vehicle speeds and steering maneuvers. Moreover, a supervisory control solution, referred to as EPS Anti-Loss-of-Assist (ALOA), is proposed that gradually and proactively reduces EPS torque assist as resistance in the EPS power circuit increases so that the EPS voltage is kept above a resetting threshold. Stationary steering tests of the proposed solution as well as demonstrations on parking lot maneuvers at General Motors Milford Proving Grounds are conducted. The stationary steering tests and demonstrations show that, with the proposed supervisory control, negative effects of increased EPS power circuit resistance can be mitigated without noticeable changes in normal driving experience.


Sign in / Sign up

Export Citation Format

Share Document