Base station distributed handover optimization in LTE self-organizing networks

Author(s):  
Lutz Ewe ◽  
Hajo Bakker
2019 ◽  
Vol 22 (4) ◽  
pp. 336-341
Author(s):  
D. V. Ivanov ◽  
D. A. Moskvin

In the article the approach and methods of ensuring the security of VANET-networks based on automated counteraction to information security threats through self-regulation of the network structure using the theory of fractal graphs is provided.


Author(s):  
Marcelo Dias de Amorim ◽  
Farid Benbadis ◽  
Mihail S. Sichitiu ◽  
Aline Carneiro Viana ◽  
Yannis Viniotis

2021 ◽  
Author(s):  
Waltenegus Dargie

<div>Self-organizing protocols and algorithms require knowledge of the underlying topology of the network. The topology can be represented by a graph or an adjacency matrix. In most practical cases, establishing the topology prior to a deployment is not possible because the exact placement of nodes and the existence of a reliable link between any two individual nodes cannot guaranteed. Therefore, this task has to be carried out after deployment. If the network is stand-alone and certain aspects are fixed (such as the identity of the base station, the size of the network, etc.), the task is achievable. If, however, the network has to interact with other systems -- such as Unmanned Aerial Vehicles (UAVs) or mobile robots -- whose operation is affected by environmental factors, the task can be difficult to achieve. In this paper we propose a dynamic topology construction algorithm, assuming that the network is a part of a joint deployment and does not have a fixed based station.</div>


Sign in / Sign up

Export Citation Format

Share Document