Analytical Resolution Method based on ambiguity function for attitude determination

Author(s):  
Boxiong Wang ◽  
Xingqun Zhan ◽  
Yanhua Zhang
2009 ◽  
Vol 10 (7) ◽  
pp. 1038-1048 ◽  
Author(s):  
Wen-rui Jin ◽  
Chuan-run Zhai ◽  
Li-duan Wang ◽  
Yan-hua Zhang ◽  
Xing-qun Zhan

2018 ◽  
Vol 56 (4) ◽  
pp. 2159-2169 ◽  
Author(s):  
Jianlai Chen ◽  
Guang-Cai Sun ◽  
Yong Wang ◽  
Liang Guo ◽  
Mengdao Xing ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Yinzhi Zhao ◽  
Jingui Zou ◽  
Peng Zhang ◽  
Jiming Guo ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based multi-antenna attitude determination method has the advantages of a simple algorithm and no error accumulation with time in long endurance operation. However, it is sometimes difficult to simultaneous obtain the fixed solutions of all antennas in vehicle attitude determination. If float or incorrect fixed solutions are used, precision and reliability of attitude cannot be guaranteed. Given this fact, a baseline-constrained ambiguity function method (BCAFM) based on a self-built four GNSS antennas hardware platform is proposed. The coordinates obtained by BCAFM can replace the unreliable real-time kinematic (RTK) float or incorrect fixed solutions, so as to assist the direct method for attitude determination. In the proposed BCAFM, the baseline constraint is applied to improve search efficiency (searching time), and the ambiguity function value (AFV) formula is optimized to enhance the discrimination of true peak. The correctness of the proposed method is verified by vehicle attitude determination results and baseline length difference. Experimental results demonstrate that the function values of error peaks are reduced, and the only true peak can be identified accurately. The valid epoch proportion increases by 14.95% after true peak coordinates are used to replace the GNSS-RTK float or incorrect fixed solutions. The precision of the three attitude angles is 0.54°, 1.46°, and 1.15°, respectively. Meanwhile, the RMS of baseline length difference is 3.8mm.


Sensors ◽  
2016 ◽  
Vol 16 (6) ◽  
pp. 841 ◽  
Author(s):  
Yingdong Yang ◽  
Xuchu Mao ◽  
Weifeng Tian

Sign in / Sign up

Export Citation Format

Share Document