Chip-grade Multi-Band Multi-GNSS RTK and Attitude Determination with Low Cost Dual Antennas for Mass Market Applications

Author(s):  
Ryan K.Y. Yang ◽  
Shi Xian Yang ◽  
Gary Hau
1963 ◽  
Vol 67 (634) ◽  
pp. 651-663 ◽  
Author(s):  
R. R. Heppe

For many years, studies of various light aircraft designs have been carried on by the Lockheed-California Company in search of a vehicle that had the potential of truly generating the “air age”—a vehicle which would perform a useful service to many people, in many jobs. Shortly after the Second World War, these studies were directed along the lines of present-day light aeroplanes, but were eventually discarded upon recognition of the limited utility of these vehicles when related to general public acceptance. However, in 1959, spurred by recent developments in VTOL craft, the Lockheed research team again raised the question, “Is it possible today to develop a vehicle of low cost and with sufficient utility to reach the mass market?”


2005 ◽  
Author(s):  
Mikko T. Syrjasuo ◽  
Brian J. Jackel ◽  
Eric F. Donovan ◽  
Trond S. Trondsen ◽  
Mike Greffen
Keyword(s):  
Low Cost ◽  

Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


2018 ◽  
Vol 7 (2) ◽  
pp. 68-75 ◽  
Author(s):  
P. N. Vummadisetty ◽  
A. Kumar

This research article presents, a compact 0.19 λ x 0.32 λ size ACS fed printed monopole wideband antenna loaded with multiple radiating branches suitable for LTE2300/WiBro, 5 GHz WLAN and WiMAX applications. The proposed triple band uniplanar antenna encompasses of C shaped strip, L shaped strip, rectangular shaped strip and a lateral ground plane. All the radiating strips and ground plane are etched on the 26 × 15 m size low cost FR4 epoxy substrate. This designed geometry evoked three independent reonances at 2.3 GHz, 3.5 GHz and 5.5 GHz with precise impedance matching over each operating band. The reflection coefficient ( ) response of the presented antenna demonstrates three distinct resonant modes associated with -10 dB bandwidths are about 2.24-2.40 GHz, 3.38-3.83 GHz and 5.0-6.25 GHz respectively. From the study, it is also observed that the proposed design works perfect with microstrip as well as CPW feedings. Hence the designed Multi Feed Multi Band (MFMB) antenna can be easily deployed in to any portable wireless device that works for 2.3/3.5/ 5 GHz frequency bands.


GPS Solutions ◽  
2005 ◽  
Vol 9 (4) ◽  
pp. 294-311 ◽  
Author(s):  
Dong-Hwan Hwang ◽  
Sang Heon Oh ◽  
Sang Jeong Lee ◽  
Chansik Park ◽  
Chris Rizos

Author(s):  
Man Ho Choi ◽  
Robert Porter ◽  
Bijan Shirinzadeh

The performances of three attitude determination algorithms are compared in this paper. The three methods are the Complementary Filter, a Quaternion-based Kalman Filter and a Quaternion-based Gradient Descent Algorithm. An analysis of their performance based on an experimental investigation was undertaken. This paper shows that the Complementary Filter requires the least computational power; Quaternion-based Kalman Filter has the best noise filtering ability; and the Quaternion-based Gradient Descent Algorithm produced estimates with the highest accuracy. As many attitude determination methodologies make use of the quaternion rotation representation, the attitude quaternion to Euler angle singularity property has been investigated. Experiments conducted show that when Y-rotation approach the singularity position (±90°), the X-rotation drifts away from the reference input. This paper proposes the use of an imaginary set of sensor measurements to replace the original sensor measurements as the Y-rotation approaches the singularity. The proposed methodology for overcoming the conversion singularity has been experimentally verified.


2020 ◽  
Vol 12 (5) ◽  
pp. 747
Author(s):  
Peng Zhang ◽  
Yinzhi Zhao ◽  
Huan Lin ◽  
Jingui Zou ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock in some epochs with the influence of signal fading and the multipath effect. When the direct attitude determination method is applied, the primary baseline may not be available (ambiguity is not fixed), leading to the inability of attitude determination. With the gradual popularization of low-cost receivers, making full use of spatial redundancy information of multiple antennas brings new ideas to the GNSS-based attitude determination method. In this paper, an attitude angle conversion algorithm, selecting an arbitrary baseline as the primary baseline, is derived. A multi-antenna attitude determination method based on primary baseline switching is proposed, which is performed on a self-designed embedded software and hardware platform. The proposed method can increase the valid epoch proportion and attitude information. In the land vehicle test, reference results output from a high-accuracy integrated navigation system were used to evaluate the accuracy and reliability. The results indicate that the proposed method is correct and feasible. The valid epoch proportion is increased by 16.2%, which can effectively improve the availability of attitude determination. The RMS of the heading, pitch and roll angles are 0.52°, 1.25° and 1.16°.


Sign in / Sign up

Export Citation Format

Share Document