integer ambiguity resolution
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 23)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Qile Zhao ◽  
Jing Guo ◽  
Sijing Liu ◽  
Jun Tao ◽  
Zhigang Hu ◽  
...  

AbstractThe Precise Point Positioning (PPP) technique uses a single Global Navigation Satellite System (GNSS) receiver to collect carrier-phase and code observations and perform centimeter-accuracy positioning together with the precise satellite orbit and clock corrections provided. According to the observations used, there are basically two approaches, namely, the ionosphere-free combination approach and the raw observation approach. The former eliminates the ionosphere effects in the observation domain, while the latter estimates the ionosphere effects using uncombined and undifferenced observations, i.e., so-called raw observations. These traditional techniques do not fix carrier-phase ambiguities to integers, if the additional corrections of satellite hardware biases are not provided to the users. To derive the corrections of hardware biases in network side, the ionosphere-free combination operation is often used to obtain the ionosphere-free ambiguities from the L1 and L2 ones produced even with the raw observation approach in earlier studies. This contribution introduces a variant of the raw observation approach that does not use any ionosphere-free (or narrow-lane) combination operator to derive satellite hardware bias and compute PPP ambiguity float and fixed solution. The reparameterization and the manipulation of design matrix coefficients are described. A computational procedure is developed to derive the satellite hardware biases on WL and L1 directly. The PPP ambiguity-fixed solutions are obtained also directly with WL/L1 integer ambiguity resolutions. The proposed method is applied to process the data of a GNSS network covering a large part of China. We produce the satellite biases of BeiDou, GPS and Galileo. The results demonstrate that both accuracy and convergence are significantly improved with integer ambiguity resolution. The BeiDou contributions on accuracy and convergence are also assessed. It is disclosed for the first time that BeiDou only ambiguity-fixed solutions achieve the similar accuracy with that of GPS/Galileo combined, at least in mainland China. The numerical analysis demonstrates that the best solutions are achieved by GPS/Galileo/BeiDou solutions. The accuracy in horizontal components is better than 6 mm, and in the height component better than 20 mm (one sigma). The mean convergence time for reliable ambiguity-fixing is about 1.37 min with 0.12 min standard deviation among stations without using ionosphere corrections and the third frequency measurements. The contribution of BDS is numerically highlighted.


Author(s):  
Pengfei Zhang ◽  
Rui Tu ◽  
Xiaochun Lu ◽  
Yuping Gao ◽  
Lihong Fan

Abstract The global positioning system (GPS) carrier-phase (CP) technique is a widely used spatial tool for remote precise time and frequency transfer. However, the performance of traditional GPS time and frequency transfer has been limeted because the ambiguity paramter is still the float solution. This study focuses on the performance of GPS precise time and frequency transfer with integer ambiguity resolution and discusses the corresponding mathematical model. Fractional-cycle bias (FCB) products were estimated by using an ionosphere-free combination. The results show that the satellite wide-lane (WL) FCB products are stable, with a standard deviation (STD) of 0.006 cycles. The narrow-lane (NL) FCB products were estimated over 15 min with the STD of 0.020 cycles. More than 98% of the WL and NL residuals are smaller than 0.25 cycles, which helps to fix the ambiguity into integers during the time and frequency transfer. Subsequently, the performances of the time transfers with integer ambiguity resolution at two time links between international laboratories were assessed in real-time and post-processing modes and compared. The results show that fixing the ambiguity into an integer in the real-time mode significantly decreases the convergence time compared with the traditional float approach. The improvement is ~49.5%. The frequency stability of the fixed solution is notably better than that of the float solution. Improvements of 48.15% and 27.9% were determined for the IENG–USN8 and WAB2–USN8 time links, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5709
Author(s):  
Paul Gratton ◽  
Simon Banville ◽  
Gérard Lachapelle ◽  
Kyle O’Keefe

The use of global navigation satellite systems (GNSS) precise point positioning (PPP) to estimate zenith tropospheric delay (ZTD) profiles in kinematic vehicular mode in mountainous areas is investigated. Car-mounted multi-constellation GNSS receivers are employed. The Natural Resources Canada Canadian Spatial Reference System PPP (CSRS-PPP) online service that currently processes dual-frequency global positioning system (GPS) and Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) measurements and is now capable of GPS integer ambiguity resolution is used. An offline version that can process the above and Galileo measurements simultaneously, including Galileo integer ambiguity resolution is also tested to evaluate the advantage of three constellations. A multi-day static data set observed under open sky is first tested to determine performance under ideal conditions. Two long road profile tests conducted in kinematic mode are then analyzed to assess the capability of the approach. The challenges of ZTD kinematic profiling are numerous, namely shorter data sets, signal shading due to topography and forests of conifers along roads, and frequent losses of phase lock requiring numerous but not always successful integer ambiguity re-initialization. ZTD profiles are therefore often only available with float ambiguities, reducing system observability. Occasional total interruption of measurement availability results in profile discontinuities. CSRS-PPP outputs separately the zenith hydrostatic or dry delay (ZHD) and water vapour content or zenith wet delay (ZWD). The two delays are analyzed separately, with emphasis on the more unpredictable and highly variable ZWD, especially in mountainous areas. The estimated delays are compared with the Vienna Mapping Function 1 (VMF1), which proves to be highly effective to model the large-scale profile variations in the Canadian Rockies, the main contribution of GNSS PPP being the estimation of higher frequency ZWD components. Of the many conclusions drawn from the field experiments, it is estimated that kinematic profiles are generally determined with accuracy of 10 to 20 mm, depending on the signal harshness of the environment.


2021 ◽  
Vol 13 (16) ◽  
pp. 3077
Author(s):  
Dimitrios Psychas ◽  
Peter J. G. Teunissen ◽  
Sandra Verhagen

The single-receiver integer ambiguity resolution-enabled variant of precise point positioning (PPP), namely PPP-RTK, has proven to be crucial in reducing the long convergence time of PPP solutions through the recovery of the integerness of the user-ambiguities. The proliferation of global navigation satellite systems (GNSS) supports various improvements in this regard through the availability of more satellites and frequencies. The increased availability of the Galileo E6 signal from GNSS receivers paves the way for speeding up integer ambiguity resolution, as more frequencies provide for a stronger model. In this contribution, the Galileo-based PPP-RTK ambiguity resolution and positioning convergence capabilities are studied and numerically demonstrated as a function of the number and spacing of frequencies, aiming to shed light on which frequencies should be used to obtain optimal performance. Through a formal analysis, we provide insight into the pivotal role of frequency separation in ambiguity resolution. Using real Galileo data on up to five frequencies and our estimated PPP-RTK corrections, representative kinematic user convergence results with partial ambiguity resolution are presented and discussed. Compared to the achieved performance of dual-frequency fixed solutions, it is found that the contribution of multi-frequency observations is significant and largely driven by frequency separation. When using all five available frequencies, it is shown that the kinematic user can achieve a sub-decimeter level convergence in 15.0 min (90% percentile). In our analysis, we also show to what extent the provision of the estimable satellite code biases as standard PPP-RTK corrections accelerates convergence. Finally, we numerically demonstrate that, when integrated with GPS, the kinematic user solution achieves convergence in 3.0 and 5.0 min on average and at 90%, respectively, in the presence of ionospheric delays, thereby indicating the single-receiver user’s fast-convergence capabilities.


2021 ◽  
Vol 147 (3) ◽  
pp. 04021013
Author(s):  
Hongyang Ma ◽  
Sandra Verhagen ◽  
Dimitrios Psychas ◽  
João Francisco Galera Monico ◽  
Haroldo Antonio Marques

GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Marcus Glaner ◽  
Robert Weber

AbstractInteger ambiguity resolution is the key for achieving the highest accuracy with Precise Point Positioning (PPP) and for significantly reducing the convergence time. Unfortunately, due to hardware phase biases originating from the satellites and receiver, fixing the phase ambiguities to their correct integer number is difficult in PPP. Nowadays, various institutions and analysis centers of the International GNSS Service (IGS) provide satellite products (orbits, clocks, biases) based on different strategies, which allow PPP with integer ambiguity resolution (PPP-AR) for GPS and Galileo. We present the theoretical background and practical application of the satellite products from CNES, CODE, SGG, and TUG. They are tested in combined GPS and Galileo PPP-AR solutions calculated using our in-house software raPPPid. The numerical results show that the choice of satellite product has an influence on the convergence time of the fixed solution. The satellite product of CODE performs better than the following, in the given order: SGGCODE, SGGGFZ, TUG, CNES, and SGGCNES. After the convergence period, a similar level of accuracy is achieved with all these products. With these satellite products and observations with an interval of 30 s, a mean convergence time of about 6 min to centimeter-level 2D positioning is achieved. Using high-rate observations and an observation interval of 1 s, this period can be reduced to a few minutes and, in the best case, just one minute.


GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Safoora Zaminpardaz ◽  
Peter J. G. Teunissen ◽  
Amir Khodabandeh

AbstractAn assessment of standalone GLONASS RTK performance is provided using its FDMA and CDMA signals. The new integer-estimable GLONASS FDMA model (Teunissen 2019), which guarantees the integer-estimability of its ambiguities, is employed. We introduce the combined integer-estimable GLONASS FDMA+CDMA model and compare its strength against the FDMA model for instantaneous integer ambiguity resolution and positioning. Various combinations of GLONASS signals are considered including FDMA L1, FDMA+CDMA L1+L3, FDMA L1+L2 and FDMA+CDMA L1+L2+L3. To provide insight into the current RTK performance of GLONASS, we used observations of a short baseline to analyze the integer ambiguity resolution success rate and positioning precision, formally and empirically. To provide insight into the future RTK performance of GLONASS, we present a formal analysis of the integer ambiguity resolution success rate and ADOP, assuming that all the GLONASS satellites transmit FDMA L1, L2 and CDMA L3 signals. A formal analysis of standalone GLONASS ambiguity resolution based on current and future GLONASS constellation is then presented for different locations around the world.


Sign in / Sign up

Export Citation Format

Share Document