Unsupervised learning of categories with local feature sets of image

Author(s):  
Razieh Khamseh Ashari
2017 ◽  
Vol 415-416 ◽  
pp. 85-99 ◽  
Author(s):  
Zhenyu Li ◽  
Adrian G. Bors

1993 ◽  
Vol 5 (2) ◽  
pp. 289-304 ◽  
Author(s):  
A. Norman Redlich

A redundancy reduction strategy, which can be applied in stages, is proposed as a way to learn as efficiently as possible the statistical properties of an ensemble of sensory messages. The method works best for inputs consisting of strongly correlated groups, that is features, with weaker statistical dependence between different features. This is the case for localized objects in an image or for words in a text. A local feature measure determining how much a single feature reduces the total redundancy is derived which turns out to depend only on the probability of the feature and of its components, but not on the statistical properties of any other features. The locality of this measure makes it ideal as the basis for a "neural" implementation of redundancy reduction, and an example of a very simple non-Hebbian algorithm is given. The effect of noise on learning redundancy is also discussed.


Author(s):  
Hyeuk Kim

Unsupervised learning in machine learning divides data into several groups. The observations in the same group have similar characteristics and the observations in the different groups have the different characteristics. In the paper, we classify data by partitioning around medoids which have some advantages over the k-means clustering. We apply it to baseball players in Korea Baseball League. We also apply the principal component analysis to data and draw the graph using two components for axis. We interpret the meaning of the clustering graphically through the procedure. The combination of the partitioning around medoids and the principal component analysis can be used to any other data and the approach makes us to figure out the characteristics easily.


Sign in / Sign up

Export Citation Format

Share Document