Short-term active distribution network operation with convex formulations of power flow

Author(s):  
Bhargav Swaminathan ◽  
Vincent Debusschere ◽  
Raphael Caire
2014 ◽  
Vol 672-674 ◽  
pp. 1175-1178
Author(s):  
Guang Min Fan ◽  
Ling Xu Guo ◽  
Wei Liang ◽  
Hong Tao Qie

The increasingly serious energy crisis and environmental pollution problems promote the large-scale application of microgrids (MGs) and electric vehicles (EVs). As the main carrier of MGs and EVs, distribution network is gradually presenting multi-source and active characteristics. A fast service restoration method of multi-source active distribution network with MGs and EVs is proposed in this paper for service restoration of distribution network, which takes effectiveness, rapidity, economy and reliability into consideration. Then, different optimal power flow (OPF) models for the service restoration strategy are constructed separately to minimize the network loss after service restoration. In addition, a genetic algorithm was introduced to solve the OPF model. The analysis of the service restoration strategy is carried out on an IEEE distribution system with three-feeder and eighteen nodes containing MGs and EVs, and the feasibility and effectiveness are verified


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 972 ◽  
Author(s):  
Fermín Barrero-González ◽  
Victor Pires ◽  
José Sousa ◽  
João Martins ◽  
María Milanés-Montero ◽  
...  

The proliferation of residential photovoltaic (PV) prosumers leads to detrimental impacts on the low-voltage (LV) distribution network operation such as reverse power flow, voltage fluctuations and voltage imbalances. This is due to the fact that the strategies for the PV inverters are usually designed to obtain the maximum energy from the panels. The most recent approach to these issues involves new inverter-based solutions. This paper proposes a novel comprehensive control strategy for the power electronic converters associated with PV installations to improve the operational performance of a four-wire LV distribution network. The objectives are to try to balance the currents demanded by consumers and to compensate the reactive power demanded by them at the expense of the remaining converters’ capacity. The strategy is implemented in each consumer installation, constituting a decentralized or distributed control and allowing its practical implementation based on local measurements. The algorithms were tested, in a yearly simulation horizon, on a typical Portuguese LV network to verify the impact of the high integration of the renewable energy sources in the network and the effectiveness and applicability of the proposed approach.


2014 ◽  
Vol 668-669 ◽  
pp. 749-752 ◽  
Author(s):  
Xiao Yi Zhou ◽  
Ling Yun Wang ◽  
Wen Yue Liang ◽  
Li Zhou

Distributed generation (DG) has an important influence on the voltage of active distribution networks. A unidirectional power distribution network will be transformed into a bidirectional, multiple power supply distribution network after DGs access to the distribution network and the direction of power flow is also changed. Considering the traditional forward and backward substitution algorithm can only deal with the equilibrium node and PQ nodes, so the other types of DGs should be transformed into PQ nodes, then its impact on active distribution network can be analyzed via the forward and backward substitution algorithm. In this paper, the characteristics of active distribution networks are analyzed firstly and a novel approach is proposed to convert PI nodes into PQ nodes. Finally, a novel forward and backward substitution algorithm is adopted to calculate the power flow of the active distribution network with DGs. Extensive validation of IEEE 18 and 33 nodes distribution system indicates that this method is feasible. Numerical results show that when DG is accessed to the appropriate location with proper capacity, it has a significant capability to support the voltages level of distribution system.


2014 ◽  
Vol 700 ◽  
pp. 103-110
Author(s):  
Lei Yu ◽  
Tian Yang Zhao ◽  
Xu Wu ◽  
Jian Hua Zhang

With recent development of technology and management in power market and equipment, more and more distributed generation (DG) is embedded in the distribution network. However the approach of connecting DG in most cases is based on a so-called ‘fit and forget’ policy and the capacity of DG is limited rigidly by distribution system operator to avoid the negative effects of high level penetration. New management technologies have been proposed to handle the integration of DGs in the distribution networks. In this review, the micro grid (MG) was treated as the local control method to coordinate DGs within a small area of distribution network. And the active distribution network (AND) was treated as the global control mechanism to actively manage DGs, MGs and other equipment. The operation framework of ADN was firstly introduced. Then based on the static and dynamic models of DGs and MGs, impacts of DGs and MGs on the ADN are surveyed from power quality, stability to the operation. Finally, the conclusion and suggestion is given in this paper.


Sign in / Sign up

Export Citation Format

Share Document