A novel design for amorphous silicon alloy solar cells

Author(s):  
S. Guha ◽  
J. Yang ◽  
A. Pawlikiewicz ◽  
T. Glatfelter ◽  
R. Ross ◽  
...  
1998 ◽  
Vol 507 ◽  
Author(s):  
J. Yang ◽  
S. Sugiyama ◽  
S. Guha

ABSTRACTWe have studied amorphous silicon alloy solar cells made by using a modified-very-highfrequency glow discharge at 75 MHz with a deposition rate of ∼6 Å/s. The solar cell performance is compared with those made from conventional glow discharge at 13.56 MHz with lower deposition rates. Cells made at ∼6 Å/s with 75 MHz showed comparable stabilized efficiency to those made at ∼3 Å/s with 13.56 MHz. The best performance, however, was obtained with ∼1 Å/s, including a stabilized 9.3% a-Si alloy single-junction cell employing conventional glow discharge technique. Using 75 MHz, we have achieved 11.1% and 10.0% initial active-area efficiencies for a-Si alloy and a-SiGe alloy n i p cells, respectively. An initial efficiency of 11.0% has also been obtained in a dual bandgap double-junction structure.


1989 ◽  
Vol 54 (23) ◽  
pp. 2330-2332 ◽  
Author(s):  
S. Guha ◽  
J. Yang ◽  
A. Pawlikiewicz ◽  
T. Glatfelter ◽  
R. Ross ◽  
...  

1986 ◽  
Vol 70 ◽  
Author(s):  
Y. Yukimoto ◽  
M. Aiga

ABSTRACTAmorphous SiGe:H alloy is the key material in achieving high conversion efficiency with tandem-type amorphous silicon alloy solar cells. Status and issues for this key material are discussed, and efforts made to irprove it are reviewed to obtain directions for higher quality a-SiGe:H alloys. An application of the improved alloy to tandem-type solar cell to achieve 9.6% efficiency for the cell size of 100 cm2 is reported.


1997 ◽  
Vol 467 ◽  
Author(s):  
S. Sugiyama ◽  
J. Yang ◽  
S. Guha

ABSTRACTWe have studied light-induced degradation in hydrogenated and deuterated amorphous silicon alloy solar cells in which intrinsic layers were deposited by using SiH4+H2 and SiD4+D2 gas mixtures respectively. Replacing hydrogen with deuterium in the intrinsic layer of the cell improves stability against light exposure. On the other hand, cells in which intrinsic layers were deposited from SiD4+H2 and SiH4+D2 do not show any improvement in stability. This result shows that improved stability in deuterated cell does not originate from simple replacement of hydrogen with deuterium. From deuterium/hydrogen effusion measurements, we found similar effusion at low temperature (400 °C) in both deuterated film and hydrogenated film prepared with heavy dilution. The latter film was shown to have oriented microstructure which was correlated with higher stability. This correlation strongly indicates that microstructure of the material plays a key role in improving the stability.


1987 ◽  
Vol 97-98 ◽  
pp. 1303-1306 ◽  
Author(s):  
J. Yang ◽  
T. Glatfelter ◽  
R. Ross ◽  
R. Mohr ◽  
J.P. Fournier ◽  
...  

1994 ◽  
Vol 336 ◽  
Author(s):  
J. Yang ◽  
X. Xu ◽  
S. Guha

ABSTRACTWe have fabricated hydrogenated amorphous silicon alloy solar cells using hydrogen dilutions at 175 °C and 300 °C, and obtained improved photovoltaic characteristics in both the initial and degraded states for the highly diluted cells; both the fill factor and the open-circuit voltage exhibit higher values before and after light soaking. Infrared analyses reveal that for a given deposition temperature the amount of bonded hydrogen has similar concentrations between the high and low hydrogen diluted samples. Optical Modelling shows a 20 MeV difference in their optical bandgap. Defect densities obtained from constant photocurrent measurements give similar values for a given deposition temperature both before and after light soaking, inconsistent with solar cell performance.


Sign in / Sign up

Export Citation Format

Share Document