Effect of Excitation Frequency on the Performance of Amorphous Silicon Alloy Solar Cells

1998 ◽  
Vol 507 ◽  
Author(s):  
J. Yang ◽  
S. Sugiyama ◽  
S. Guha

ABSTRACTWe have studied amorphous silicon alloy solar cells made by using a modified-very-highfrequency glow discharge at 75 MHz with a deposition rate of ∼6 Å/s. The solar cell performance is compared with those made from conventional glow discharge at 13.56 MHz with lower deposition rates. Cells made at ∼6 Å/s with 75 MHz showed comparable stabilized efficiency to those made at ∼3 Å/s with 13.56 MHz. The best performance, however, was obtained with ∼1 Å/s, including a stabilized 9.3% a-Si alloy single-junction cell employing conventional glow discharge technique. Using 75 MHz, we have achieved 11.1% and 10.0% initial active-area efficiencies for a-Si alloy and a-SiGe alloy n i p cells, respectively. An initial efficiency of 11.0% has also been obtained in a dual bandgap double-junction structure.

1994 ◽  
Vol 336 ◽  
Author(s):  
J. Yang ◽  
X. Xu ◽  
S. Guha

ABSTRACTWe have fabricated hydrogenated amorphous silicon alloy solar cells using hydrogen dilutions at 175 °C and 300 °C, and obtained improved photovoltaic characteristics in both the initial and degraded states for the highly diluted cells; both the fill factor and the open-circuit voltage exhibit higher values before and after light soaking. Infrared analyses reveal that for a given deposition temperature the amount of bonded hydrogen has similar concentrations between the high and low hydrogen diluted samples. Optical Modelling shows a 20 MeV difference in their optical bandgap. Defect densities obtained from constant photocurrent measurements give similar values for a given deposition temperature both before and after light soaking, inconsistent with solar cell performance.


1996 ◽  
Vol 420 ◽  
Author(s):  
S. Sugiyama ◽  
X. Xu ◽  
J. Yang ◽  
S. Guha

AbstractWe have studied the light-induced degradation of amorphous silicon-germanium (a-SiGe:H) alloy single-junction solar cells with high initial performance deposited at high rates. The intrinsic layers were deposited using microwave (MW) glow-discharge technique at deposition rates between 10 and 40 Å/s. The results show that light-induced degradation of the cells is higher than that of cells deposited at low rates using RF glow-discharge technique, and it does not strongly depend on deposition rates over this range. The total hydrogen content and the ratio of Si-H2, Ge-H, and Ge-H2 to Si-H bonding estimated by infrared (IR) absorption in films are correlated with the cell degradation results. We have also investigated the effect of ionbombardment on film properties. Films with low ion-bombardment are more porous and have higher composition of Si-H2 and Ge-H2 bonding. Appropriate ion-bombardment makes denser structure in a-SiGe:H alloy films deposited at high rates. This improves the cell performance as well.


2000 ◽  
Vol 609 ◽  
Author(s):  
Jeffrey Yang ◽  
Kenneth Lord ◽  
Subhendu Guha ◽  
S.R. Ovshinsky

ABSTRACTA systematic study has been made of amorphous silicon (a-Si) alloy solar cells using various hydrogen dilutions during the growth of the intrinsic (i) layer. We find that the open-circuit voltage (Voc) of the cells increases as the dilution increases; it then reaches a maximum before it decreases dramatically. This sudden drop in Voc is attributed to the transition from amorphous silicon to microcrystalline inclusions in the i layer. We study i-layer thicknesses ranging from 1000 Å to 5000 Å and find that the transition occurs in all thicknesses investigated. Based on this study, a-Si alloy p i n solar cells suitable for use in the top cell of a high efficiency triple-junction structure are made. By selecting an appropriate dilution, cells with Voc greater than 1 V can be achieved readily. Solar cells made near the threshold not only exhibit higher initial characteristics but also better stability against light soaking. We have compared top cells made near the threshold with our previous best data, and found that both the initial and stable efficiencies are superior for the near-threshold cells. For an a-Si/a-Si double-junction device, a Voc value exceeding 2 V has been obtained using thin component cells. Thicker component cells give rise to an initial active-area efficiency of 11.9% for this tandem structure.


2007 ◽  
Vol 989 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on high rate deposition of hydrogenated amorphous silicon (a-Si:H) and silicon germanium (a-SiGe:H) based n-i-p solar cells. The intrinsic a-Si:H and a-SiGe:H layers were deposited using modified very high frequency (MVHF) glow discharge. We found that both the initial cell performance and stability of the MVHF a-Si:H single-junction cells are independent of the deposition rate up to 15 Å/s. The average initial and stable active-area cell efficiencies of 10.0% and 8.5%, respectively, were obtained for the cells on textured Ag/ZnO coated stainless steel substrates. a-SiGe:H single-junction cells were also optimized at a rate of ~10 Å/s. The cell performance is similar to those made using conventional radio frequency technique at 3 Å/s. By combining the optimized component cells made at 10 Å/s, an a-Si:H/a-SiGe:H double-junction solar cell with an initial active-area efficiency of 11.7% was achieved.


2001 ◽  
Vol 664 ◽  
Author(s):  
Jeffrey Yang ◽  
Baojie Yan ◽  
Jozef Smeets ◽  
Subhendu Guha

ABSTRACTA modified very high frequency (MVHF) glow discharge technique is used to deposit amorphous silicon (a-Si) and amorphous silicon-germanium (a-SiGe) alloy solar cells at high deposition rates. High quality a-Si alloy solar cells have been obtained by using MVHF at deposition rates up to ∼10 Å/s. The cells show good initial and stabilized efficiencies comparable to those obtained from conventional radio-frequency (RF) glow discharge deposition at low rates (∼1 Å/s). However, high quality a-SiGe alloy solar cells are more difficult to achieve at high deposition rates. In this paper, we present the progress made on a-SiGe alloy solar cells by incorporating bandgap profiling and appropriate buffer layers. Using the improved a-SiGe alloy solar cells, a-Si/a-SiGe tandem configurations are made and results presented.


1995 ◽  
Vol 377 ◽  
Author(s):  
S. Guha ◽  
X. Xu ◽  
J. Yang ◽  
A. Banerjee

ABSTRACTThe optimum deposition conditions for growth of amorphous silicon (a-Si:H) and silicon-germanium (a-SiGe:H) alloys deposited at high rates using microwave glow-discharge are found to be quite different from those for radio-frequency glow-discharge material deposited at low rates. High substrate temperature (350 to 500 °C), low pressure (1–5 mtorr) and positive ion bombardment are found to be desirable for optimum growth conditions at high deposition rates. We have achieved an active-area efficiency of 11.44% for a double-junction structure in which the bottom cell incorporates a-SiGe:H alloy deposited at 100 Å/sec using microwave glow-discharge.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Abdolnabi Kosarian ◽  
Peyman Jelodarian

In amorphous thin-film p-i-n solar cell, a thick absorber layer can absorb more light to generate carriers. On the other hand, a thin i-layer cannot absorb enough light. Thickness of the i-layer is a key parameter that can limit the performance of solar cell. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. Especially, current density of the cell can be enhanced without deteriorating its open circuit voltage, due to the modulation of material band-gap and the formation of a heterostructure. This work presents a novel numerical evaluation and optimization of an amorphous silicon double-junction structure thin-film solar cell (a-SiGe:H/a-Si:H) and focuses on optimization of a-SiGe:H mid-gap single-junction solar cell based on the optimization of the Ge content in the film, thickness of i-layer, p-layer and doping concentration of p-layer in a (p-layer a-Si:H/i-layer a-SiGe:H/n-layer a-Si:H) single-junction thin-film solar cell. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6.5% compared with the traditional a-Si:H solar cells.


2003 ◽  
Vol 42 (Part 2, No. 11A) ◽  
pp. L1312-L1314 ◽  
Author(s):  
Akihiro Takano ◽  
Masayuki Tanda ◽  
Makoto Shimosawa ◽  
Takehito Wada ◽  
Tomoyoshi Kamoshita

1998 ◽  
Vol 507 ◽  
Author(s):  
S. Guha ◽  
J. Yang ◽  
A. Banerjee ◽  
S. Sugiyama

ABSTRACTTwo significant developments took place in 1997 in the field of amorphous silicon alloy photovoltaic technology. First, a world record stable cell efficiency of 13% was demonstrated using a spectral-splitting, triple-junction structure. Second, a triple-junction photovoltaic manufacturing facility of an annual capacity of 5 MW was commissioned. In order to make the transition from R&D to production, critical material issues and deposition methods which ensure the lowest module cost per delivered watt needed to be evaluated. In this paper, we discuss some of these issues with special reference to the cell materials.


Sign in / Sign up

Export Citation Format

Share Document