Phasor measurement unit integration: A review on optimal PMU placement methods in power system

Author(s):  
Subrina Sultana Noureen ◽  
Vishwajit Roy ◽  
Stephen B. Bayne
Author(s):  
Rachana Pandey ◽  
◽  
Dr. H.K. Verma ◽  
Dr. Arun Parakh ◽  
Dr. Cheshta Jain Khare ◽  
...  

In today’s world, a Phasor Measurement Unit (PMU) is a crucial component of our power network for managing, controlling, and monitoring. PMU can provide synchronized voltage current, and frequency measurements in real time. We can't put a PMU in every bus in the electrical grid because it's not viable from a productivity and economic standpoint, and it's also not practical for handling huge data. As a result, it's critical to reduce the amount of PMU in the power network while also increasing the power network's observability. The optimal PMU placement problem is solved using a variety of methodologies. The paper's main goal is to provide a brief overview of synchrophasor technology, phasor measurement units (PMU), and optimal PMU placement in order to reduce the number of PMUs in the system while maintaining complete observability and application in today's power systems.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1174
Author(s):  
Maveeya Baba ◽  
Nursyarizal B. M. Nor ◽  
M. Aman.Sheikh ◽  
Muhammad Irfan ◽  
Mohammad Tahir

Currently the new state of power system relies on a precise monitoring of electrical quantities such as voltage and current phasors. Occasionally, its operation gets disturbed because of the flicking in load and generation which may result in the interruption of power supply or may cause catastrophic failure. The advanced technology of phasor measurement unit (PMU) is introduced in the late 1990s to measure the behavior of power system more symmetrically, accurately, and precisely. However, the implementation of this device at every busbar in a grid station is not an easy task because of its expensive installation and manufacturing cost. As a result, an optimum placement of PMU is much needed in this case. Therefore, this paper proposes a new symmetry approach of multiple objectives for the optimum placement of PMU problem (OPPP) in order to minimize the installed number of PMUs and maximize the measurement redundancy of the network. To overcome the drawbacks of traditional techniques in the proposed work a reduction and exclusion of pure transit node technique is used in the placement set. In which only the strategic, significant, and the most desirable buses are selected without considering zero injection buses (ZIBs). The fundamental novelty of the proposed work considers most importantly the reduction technique of ZIBs from the optimum PMU locations, as far as the prior approaches concern almost every algorithm have taken ZIBs as their optimal placement sets. Furthermore, a PMUs channel limits and an alternative symmetry location for the PMUs placement are considered when there is an outage or PMUs failure may occur. The performance of the proposed method is verified on different IEEE-standard such as: IEEE-9, IEEE-14, IEEE-24, IEEE-30, IEEE-57, IEEE-118, and a New England-39 bus system. The success of the proposed work was compared with the existing techniques’ outcomes from the literature.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2021
Author(s):  
Ahmad Asrul Ibrahim ◽  
Khairuddin Khalid ◽  
Hussain Shareef ◽  
Nor Azwan Mohamed Kamari

This paper proposes a technique to determine the possible optimal placement of the phasor measurement unit (PMU) in power grids for normal operating conditions. All possible combinations of PMU placement, including infeasible combinations, are typically considered in finding the optimal solution, which could be a massive search space. An integer search algorithm called the bounded search technique is introduced to reduce the search space in solving a minimum number of PMU allocations whilst maintaining full system observability. The proposed technique is based on connectivity and symmetry constraints that can be derived from the observability matrix. As the technique is coupled with the exhaustive technique, the technique is called the bounded exhaustive search (BES) technique. Several IEEE test systems, namely, IEEE 9-bus, IEEE 14-bus, IEEE 24-bus and IEEE 30-bus, are considered to showcase the performance of the proposed technique. An initial Monte Carlo simulation was carried out to evaluate the capability of the bounded search technique in providing a smaller feasible search space. The effectiveness of the BES technique in terms of computational time is compared with the existing exhaustive technique. Results demonstrate that the search space can be reduced tremendously, and the computational burden can be eased, when finding the optimal PMU placement in power grids.


Author(s):  
Takuhei Hashiguchi ◽  
Hiroyuki Ukai ◽  
Yasunori Mitani ◽  
Masayuki Watanabe ◽  
Osamu Saeki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document