Multidisciplinary design optimization of the acoustic interaction between the satellite and launch vehicle

Author(s):  
Mohammed Amine Zafrane ◽  
Abdelmadjid Boudjemai ◽  
Nabil Boughanmi
2017 ◽  
Vol 26 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Loïc Brevault ◽  
Mathieu Balesdent ◽  
Sébastien Defoort

The design of complex systems such as launch vehicles involves different fields of expertise that are interconnected. To perform multidisciplinary studies, concurrent engineering aims at providing a collaborative environment which often relies on data set exchange. In order to efficiently achieve system-level analyses (uncertainty propagation, sensitivity analysis, optimization, etc.), it is necessary to go beyond data set exchange which limits the capabilities of performance assessments. Multidisciplinary design optimization methodologies is a collection of engineering methodologies to optimize systems modelled as a set of coupled disciplinary analyses and is a key enabler to extend concurrent engineering capabilities. This article is focused on several examples of recent developments of multidisciplinary design optimization methodologies (e.g. multidisciplinary design optimization with transversal decomposition of the design process, multidisciplinary design optimization under uncertainty) with applications to launch vehicle design to illustrate the benefices of taking into account the coupling effects between the different physics all along the design process. These methods enable to manage the complexity of the involved physical phenomena and their interactions in order to generate innovative concepts such as reusable launch vehicles beyond existing solutions.


2013 ◽  
Vol 302 ◽  
pp. 583-588 ◽  
Author(s):  
Fredy M. Villanueva ◽  
Lin Shu He ◽  
Da Jun Xu

A multidisciplinary design optimization approach of a three stage solid propellant canister-launched launch vehicle is considered. A genetic algorithm (GA) optimization method has been used. The optimized launch vehicle (LV) is capable of delivering a microsatellite of 60 kg. to a low earth orbit (LEO) of 600 km. altitude. The LV design variables and the trajectory profile variables were optimized simultaneously, while a depleted shutdown condition was considered for every stage, avoiding the necessity of a thrust termination device, resulting in reduced gross launch mass of the LV. The results show that the proposed optimization approach was able to find the convergence of the optimal solution with highly acceptable value for conceptual design phase.


Sign in / Sign up

Export Citation Format

Share Document