Failure detection algorithms for a reliable execution of parallel programs

Author(s):  
S. Chabridon ◽  
E. Gelenbe
Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 201
Author(s):  
Qinfeng Xiao ◽  
Jing Wang ◽  
Youfang Lin ◽  
Wenbo Gongsa ◽  
Ganghui Hu ◽  
...  

We address the problem of unsupervised anomaly detection for multivariate data. Traditional machine learning based anomaly detection algorithms rely on specific assumptions of normal patterns and fail to model complex feature interactions and relations. Recently, existing deep learning based methods are promising for extracting representations from complex features. These methods train an auxiliary task, e.g., reconstruction and prediction, on normal samples. They further assume that anomalies fail to perform well on the auxiliary task since they are never trained during the model optimization. However, the assumption does not always hold in practice. Deep models may also perform the auxiliary task well on anomalous samples, leading to the failure detection of anomalies. To effectively detect anomalies for multivariate data, this paper introduces a teacher-student distillation based framework Distillated Teacher-Student Network Ensemble (DTSNE). The paradigm of the teacher-student distillation is able to deal with high-dimensional complex features. In addition, an ensemble of student networks provides a better capability to avoid generalizing the auxiliary task performance on anomalous samples. To validate the effectiveness of our model, we conduct extensive experiments on real-world datasets. Experimental results show superior performance of DTSNE over competing methods. Analysis and discussion towards the behavior of our model are also provided in the experiment section.


Author(s):  
Kyusung Kim ◽  
Girija Parthasarathy ◽  
Onder Uluyol ◽  
Wendy Foslien ◽  
Shuangwen Sheng ◽  
...  

High operations and maintenance costs for wind turbines reduce their overall cost effectiveness. One of the biggest drivers of maintenance cost is unscheduled maintenance due to unexpected failures. Continuous monitoring of wind turbine health using automated failure detection algorithms can improve turbine reliability and reduce maintenance costs by detecting failures before they reach a catastrophic stage and by eliminating unnecessary scheduled maintenance. A SCADA (Supervisory Control and Data Acquisition System) -data based condition monitoring system uses data already collected at the wind turbine controller. It is a cost-effective way to monitor wind turbines for early warning of failures and performance issues. In this paper, we describe our exploration of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines. We used a number of measurements to develop anomaly detection algorithms and investigated classification techniques using clustering algorithms and principal components analysis for capturing fault signatures. Anomalous signatures due to a reported gearbox failure are identified from a set of original measurements including rotor speeds and produced power.


2018 ◽  
Vol 12 (3) ◽  
pp. 599-607 ◽  
Author(s):  
Daniel P. Howsmon ◽  
Nihat Baysal ◽  
Bruce A. Buckingham ◽  
Gregory P. Forlenza ◽  
Trang T. Ly ◽  
...  

Background: As evidence emerges that artificial pancreas systems improve clinical outcomes for patients with type 1 diabetes, the burden of this disease will hopefully begin to be alleviated for many patients and caregivers. However, reliance on automated insulin delivery potentially means patients will be slower to act when devices stop functioning appropriately. One such scenario involves an insulin infusion site failure, where the insulin that is recorded as delivered fails to affect the patient’s glucose as expected. Alerting patients to these events in real time would potentially reduce hyperglycemia and ketosis associated with infusion site failures. Methods: An infusion site failure detection algorithm was deployed in a randomized crossover study with artificial pancreas and sensor-augmented pump arms in an outpatient setting. Each arm lasted two weeks. Nineteen participants wore infusion sets for up to 7 days. Clinicians contacted patients to confirm infusion site failures detected by the algorithm and instructed on set replacement if failure was confirmed. Results: In real time and under zone model predictive control, the infusion site failure detection algorithm achieved a sensitivity of 88.0% (n = 25) while issuing only 0.22 false positives per day, compared with a sensitivity of 73.3% (n = 15) and 0.27 false positives per day in the SAP arm (as indicated by retrospective analysis). No association between intervention strategy and duration of infusion sets was observed ( P = .58). Conclusions: As patient burden is reduced by each generation of advanced diabetes technology, fault detection algorithms will help ensure that patients are alerted when they need to manually intervene. Clinical Trial Identifier: www.clinicaltrials.gov,NCT02773875


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6489
Author(s):  
Jiaxi Liu ◽  
Weizhong Gao ◽  
Jian Dong ◽  
Na Wu ◽  
Fei Ding

Many environmental monitoring applications that are based on the Internet of Things (IoT) require robust and available systems. These systems must be able to tolerate the hardware or software failure of nodes and communication failure between nodes. However, node failure is inevitable due to environmental and human factors, and battery depletion in particular is a major contributor to node failure. The existing failure detection algorithms seldom consider the problem of node battery consumption. In order to rectify this, we propose a low-power failure detector (LP-FD) that can provide an acceptable failure detection service and can save on the battery consumption of nodes. From simulation experiments, results show that the LP-FD can provide better detection speed, accuracy, overhead and battery consumption than other failure detection algorithms.


Sign in / Sign up

Export Citation Format

Share Document