Implementations of plane wave source for BoR-FDTD

Author(s):  
S. H. Dahlan ◽  
Z. Z. Abidin ◽  
K. N. Ramli ◽  
A. Rolland ◽  
R. Sauleau
Keyword(s):  
Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S549-S556 ◽  
Author(s):  
Xiongwen Wang ◽  
Xu Ji ◽  
Hongwei Liu ◽  
Yi Luo

Plane-wave reverse time migration (RTM) could potentially provide quick subsurface images by migrating fewer plane-wave gathers than shot gathers. However, the time delay between the first and the last excitation sources in the plane-wave source largely increases the computation cost and decreases the practical value of this method. Although the time delay problem is easily overcome by periodical phase shifting in the frequency domain for one-way wave-equation migration, it remains a challenge for time-domain RTM. We have developed a novel method, referred as to fast plane-wave RTM (FP-RTM), to eliminate unnecessary computation burden and significantly reduce the computational cost. In the proposed FP-RTM, we assume that the Green’s function has finite-length support; thus, the plane-wave source function and its responding data can be wrapped periodically in the time domain. The wrapping length is the assumed total duration length of Green’s function. We also determine that only two period plane-wave source and data after the wrapping process are required for generating the outcome with adequate accuracy. Although the computation time for one plane-wave gather is twice as long as a normal shot gather migration, a large amount of computation cost is saved because the total number of plane-wave gathers to be migrated is usually much less than the total number of shot gathers. Our FP-RTM can be used to rapidly generate RTM images and plane-wave domain common-image gathers for velocity model building. The synthetic and field data examples are evaluated to validate the efficiency and accuracy of our method.


2011 ◽  
Vol 20 (11) ◽  
pp. 114701 ◽  
Author(s):  
Hui Wang ◽  
Zhi-Xiang Huang ◽  
Xian-Liang Wu ◽  
Xin-Gang Ren

Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA199-WCA209 ◽  
Author(s):  
Guojian Shan ◽  
Robert Clapp ◽  
Biondo Biondi

We have extended isotropic plane-wave migration in tilted coordinates to 3D anisotropic media and applied it on a Gulf of Mexico data set. Recorded surface data are transformed to plane-wave data by slant-stack processing in inline and crossline directions. The source plane wave and its corresponding slant-stacked data are extrapolated into the subsurface within a tilted coordinate system whose direction depends on the propagation direction of the plane wave. Images are generated by crosscorrelating these two wavefields. The shot sampling is sparse in the crossline direction, and the source generated by slant stacking is not really a plane-wave source but a phase-encoded source. We have discovered that phase-encoded source migration in tilted coordinates can image steep reflectors, using 2D synthetic data set examples. The field data example shows that 3D plane-wave migration in tilted coordinates can image steeply dipping salt flanks and faults, even though the one-way wave-equation operator is used for wavefield extrapolation.


2020 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Lele Zhang ◽  
Jan Thorbecke ◽  
Kees Wapenaar ◽  
Evert Slob

<p>Seismic images provided by standard Reverse Time Migration are usually contaminated by artefacts associated with the migration of multiples.</p><p>Multiples can corrupt seismic images by producing both false negatives, i.e. by destructively interfering with primaries, and false positives, i.e. by focusing energy at unphysical interfaces. Free-surface multiples particularly affect seismic images resulting from marine data, while internal multiples strongly contaminate both land and marine data. Multiple prediction / primary synthesis methods are usually designed to operate on point source gathers, and can therefore be computationally  demanding when large problems, involving hundreds of gathers, are considered.</p><p>In this contribution, a new scheme for fully data-driven retrieval of primary responses of plane-wave sources is presented. The proposed scheme, based on convolutions and cross-correlations of the reflection response with itself,  extends a recently devised Marchenko point-sources primary retrieval method for to plane-wave source data. As a result, the presented algorithm allows fully data-driven synthesis of primary reflections associated with plane-wave source data. Once primary plane-wave responses are estimated, they are used for multiple-free imaging via standard reverse time migration. Numerical tests of increasing complexity demonstrate the potential of the proposed algorithm to produce multiple-free images only involving the migration of few datasets.</p><p>The plane-wave source primary synthesis algorithm discussed in this contribution could then be used as an initial and unexpensive processing step, potentially guiding more expensive target imaging techniques. Moreover, the method could be applied to large 3D problems for which standard methods are prohibitively expensive from a computational point of view.</p>


2020 ◽  
Vol 68 (8) ◽  
pp. 6214-6225 ◽  
Author(s):  
Hailiang Wei ◽  
Yanming Liu ◽  
Lei Shi ◽  
Bo Yao ◽  
Xiaoping Li

In this paper, new expressions for the acoustic field produced when a plane-wave source of sound is diffracted by a soft, hard or mixed soft-hard wedge whose angle can be expressed as a rational multiple of π are given. The solution is expressed in terms of geometrical acoustic source terms and real integrals that represent the diffracted field. The expressions are in a form that allows easy calculation of the acoustic field. Uniformly valid expressions for the far field are also given for all values of the angular variable. The general result obtained includes, as special cases, Sommerfeld’s solution for diffraction by a half-plane, Reiche’s result for the diffraction by a right-angled wedge, and a new representation for the solution of the problem of diffraction by a mixed soft-hard half-plane.


Sign in / Sign up

Export Citation Format

Share Document