3D plane-wave migration in tilted coordinates: A field data example

Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA199-WCA209 ◽  
Author(s):  
Guojian Shan ◽  
Robert Clapp ◽  
Biondo Biondi

We have extended isotropic plane-wave migration in tilted coordinates to 3D anisotropic media and applied it on a Gulf of Mexico data set. Recorded surface data are transformed to plane-wave data by slant-stack processing in inline and crossline directions. The source plane wave and its corresponding slant-stacked data are extrapolated into the subsurface within a tilted coordinate system whose direction depends on the propagation direction of the plane wave. Images are generated by crosscorrelating these two wavefields. The shot sampling is sparse in the crossline direction, and the source generated by slant stacking is not really a plane-wave source but a phase-encoded source. We have discovered that phase-encoded source migration in tilted coordinates can image steep reflectors, using 2D synthetic data set examples. The field data example shows that 3D plane-wave migration in tilted coordinates can image steeply dipping salt flanks and faults, even though the one-way wave-equation operator is used for wavefield extrapolation.

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. S185-S194 ◽  
Author(s):  
Guojian Shan ◽  
Biondo Biondi

We have developed a plane-wave migration method that efficiently images steeply dipping reflectors using one-way wavefield extrapolation. The recorded surface data are converted to plane-wave source data by slant stacking. The data set corresponding to each plane-wave source is migrated independently in a tilted coordinate system, with the extrapolation direction determined by the initial propagation direction of the plane wave at the surface. Waves illuminating steeply dipping reflectors, such as overturned waves and waves traveling nearly horizontally, are extrapolated accurately in an appropriate tilted coordinate system because the extrapolation direction is close to the propagation directions for these waves. Two-dimensional impulse responses and synthetic data examples demonstrate that plane-wave migration in tilted coordinates generates high-quality images of steeply dipping reflectors, particularly rugose salt tops and steep salt flanks.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


2010 ◽  
Vol 14 (3) ◽  
pp. 545-556 ◽  
Author(s):  
J. Rings ◽  
J. A. Huisman ◽  
H. Vereecken

Abstract. Coupled hydrogeophysical methods infer hydrological and petrophysical parameters directly from geophysical measurements. Widespread methods do not explicitly recognize uncertainty in parameter estimates. Therefore, we apply a sequential Bayesian framework that provides updates of state, parameters and their uncertainty whenever measurements become available. We have coupled a hydrological and an electrical resistivity tomography (ERT) forward code in a particle filtering framework. First, we analyze a synthetic data set of lysimeter infiltration monitored with ERT. In a second step, we apply the approach to field data measured during an infiltration event on a full-scale dike model. For the synthetic data, the water content distribution and the hydraulic conductivity are accurately estimated after a few time steps. For the field data, hydraulic parameters are successfully estimated from water content measurements made with spatial time domain reflectometry and ERT, and the development of their posterior distributions is shown.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. V7-V16 ◽  
Author(s):  
Kenji Nose-Filho ◽  
André K. Takahata ◽  
Renato Lopes ◽  
João M. T. Romano

We have addressed blind deconvolution in a multichannel framework. Recently, a robust solution to this problem based on a Bayesian approach called sparse multichannel blind deconvolution (SMBD) was proposed in the literature with interesting results. However, its computational complexity can be high. We have proposed a fast algorithm based on the minimum entropy deconvolution, which is considerably less expensive. We designed the deconvolution filter to minimize a normalized version of the hybrid [Formula: see text]-norm loss function. This is in contrast to the SMBD, in which the hybrid [Formula: see text]-norm function is used as a regularization term to directly determine the deconvolved signal. Results with synthetic data determined that the performance of the obtained deconvolution filter was similar to the one obtained in a supervised framework. Similar results were also obtained in a real marine data set for both techniques.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. V213-V225 ◽  
Author(s):  
Shaohuan Zu ◽  
Hui Zhou ◽  
Yangkang Chen ◽  
Shan Qu ◽  
Xiaofeng Zou ◽  
...  

We have designed a periodically varying code that can avoid the problem of the local coherency and make the interference distribute uniformly in a given range; hence, it was better at suppressing incoherent interference (blending noise) and preserving coherent useful signals compared with a random dithering code. We have also devised a new form of the iterative method to remove interference generated from the simultaneous source acquisition. In each iteration, we have estimated the interference using the blending operator following the proposed formula and then subtracted the interference from the pseudodeblended data. To further eliminate the incoherent interference and constrain the inversion, the data were then transformed to an auxiliary sparse domain for applying a thresholding operator. During the iterations, the threshold was decreased from the largest value to zero following an exponential function. The exponentially decreasing threshold aimed to gradually pass the deblended data to a more acceptable model subspace. Two numerically blended synthetic data sets and one numerically blended practical field data set from an ocean bottom cable were used to demonstrate the usefulness of our proposed method and the better performance of the periodically varying code over the traditional random dithering code.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 195-205 ◽  
Author(s):  
Hans J. Tieman

Plane‐wave data can be produced by slant stacking common geophone gathers over source locations. Practical difficulties arise with slant stacks over common receiver gathers that do not arise with slant stacks over common‐midpoint gathers. New techniques such as hyperbolic velocity filtering allow the production of high‐quality slant stacks of common‐midpoint data that are relatively free of artifacts. These techniques can not be used on common geophone data because of the less predictive nature of data in this domain. However, unlike plane‐wave data, slant stacks over midpoint gathers cannot be migrated accurately using depth migration. A new transformation that links common‐midpoint slant stacks to common geophone slant stacks allows the use together of optimized methods of slant stacking and accurate depth migration in data processing. Accurate depth migration algorithms are needed to migrate plane‐wave data because of the potentially high angles of propagation exhibited by the data and because of any lateral velocity variations in the subsurface. Splitting the one‐way wave continuation operator into two components (one that is a function of a laterally independent velocity, and a residual term that handles lateral variations in subsurface velocities) results in a good approximation. The first component is applied in the wavenumber domain, the other is applied in the space domain. The approximation is accurate for any angle of propagation in the absence of lateral velocity variations, although with severe lateral velocity variations the accuracy is reduced to 50°. High‐quality plane‐wave data migrated using accurate wave continuation operators results in a high‐quality image of the subsurface. Because of the signal‐to‐noise content of this data the number of sections that need to be migrated can be reduced considerably. This not only saves computer time, more importantly it makes computer‐intensive tasks such as migration velocity analysis based on maximizing stack power more feasible.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S87-S100 ◽  
Author(s):  
Hao Hu ◽  
Yike Liu ◽  
Yingcai Zheng ◽  
Xuejian Liu ◽  
Huiyi Lu

Least-squares migration (LSM) can be effective to mitigate the limitation of finite-seismic acquisition, balance the subsurface illumination, and improve the spatial resolution of the image, but it requires iterations of migration and demigration to obtain the desired subsurface reflectivity model. The computational efficiency and accuracy of migration and demigration operators are crucial for applying the algorithm. We have developed a test of the feasibility of using the Gaussian beam as the wavefield extrapolating operator for the LSM, denoted as least-squares Gaussian beam migration. Our method combines the advantages of the LSM and the efficiency of the Gaussian beam propagator. Our numerical evaluations, including two synthetic data sets and one marine field data set, illustrate that the proposed approach could be used to obtain amplitude-balanced images and to broaden the bandwidth of the migrated images in particular for the low-wavenumber components.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S197-S205 ◽  
Author(s):  
Zhaolun Liu ◽  
Abdullah AlTheyab ◽  
Sherif M. Hanafy ◽  
Gerard Schuster

We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength [Formula: see text] of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third [Formula: see text]. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half [Formula: see text].


2005 ◽  
Vol 17 (11) ◽  
pp. 2482-2507 ◽  
Author(s):  
Qi Zhao ◽  
David J. Miller

The goal of semisupervised clustering/mixture modeling is to learn the underlying groups comprising a given data set when there is also some form of instance-level supervision available, usually in the form of labels or pairwise sample constraints. Most prior work with constraints assumes the number of classes is known, with each learned cluster assumed to be a class and, hence, subject to the given class constraints. When the number of classes is unknown or when the one-cluster-per-class assumption is not valid, the use of constraints may actually be deleterious to learning the ground-truth data groups. We address this by (1) allowing allocation of multiple mixture components to individual classes and (2) estimating both the number of components and the number of classes. We also address new class discovery, with components void of constraints treated as putative unknown classes. For both real-world and synthetic data, our method is shown to accurately estimate the number of classes and to give favorable comparison with the recent approach of Shental, Bar-Hillel, Hertz, and Weinshall (2003).


Geophysics ◽  
1985 ◽  
Vol 50 (11) ◽  
pp. 1701-1720 ◽  
Author(s):  
Glyn M. Jones ◽  
D. B. Jovanovich

A new technique is presented for the inversion of head‐wave traveltimes to infer near‐surface structure. Traveltimes computed along intersecting pairs of refracted rays are used to reconstruct the shape of the first refracting horizon beneath the surface and variations in refractor velocity along this boundary. The information derived can be used as the basis for further processing, such as the calculation of near‐surface static delays. One advantage of the method is that the shape of the refractor is determined independently of the refractor velocity. With multifold coverage, rapid lateral changes in refractor geometry or velocity can be mapped. Two examples of the inversion technique are presented: one uses a synthetic data set; the other is drawn from field data shot over a deep graben filled with sediment. The results obtained using the synthetic data validate the method and support the conclusions of an error analysis, in which errors in the refractor velocity determined using receivers to the left and right of the shots are of opposite sign. The true refractor velocity therefore falls between the two sets of estimates. The refraction image obtained by inversion of the set of field data is in good agreement with a constant‐velocity reflection stack and illustrates that the ray inversion method can handle large lateral changes in refractor velocity or relief.


Sign in / Sign up

Export Citation Format

Share Document