Algebraic elimination-based real-time forward kinematics of the 6-6 Stewart platform with planar base and platform

Author(s):  
Tae-Young Lee ◽  
Jae-Kyung Shim
Author(s):  
Tae-Young Lee ◽  
Jae-Kyung Shim

Abstract The forward kinematics of the Stewart platform is to find the postures of the moving platform for a given set of leg lengths. In case of the general Stewart platform, the number of solutions of the problem is up to forty in the complex domain. Theoretically, it is not possible to uniquely determine the actual configuration with six leg length measurements only. An approach to get a single actual configuration is to make over-constrained system by adding extra sensors. This paper presents an algebraic elimination-based method for the real-time forward kinematics of the general Stewart platform with one extra sensor. The proposed algorithm does not require initial estimates of solutions unlike the numerical iterative methods, and can be implemented in C language using conventional double precision data with 15 significant digits. A numerical example is given to confirm the effectiveness and correctness of the developed algorithm for real-time computation.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4233 ◽  
Author(s):  
Zhihua Liu ◽  
Chenguang Cai ◽  
Ming Yang ◽  
Ying Zhang

The micro-electro-mechanical system (MEMS) dynamic inclinometer integrates a tri-axis gyroscope and a tri-axis accelerometer for real-time tilt measurement. The Stewart platform has the ability to generate six degrees of freedom of spatial orbits. The method of applying spatial orbits to the testing of MEMS inclinometers is investigated. Inverse and forward kinematics are analyzed for controlling and measuring the position and orientation of the Stewart platform. The Stewart platform is controlled to generate a conical motion, based on which the sensitivities of the gyroscope, accelerometer, and tilt sensing are determined. Spatial positional orbits are also generated in order to obtain the tilt angles caused by the cross-coupling influence. The experiment is conducted to show that the tested amplitude frequency deviations of the gyroscope and tilt sensing sensitivities between the Stewart platform and the traditional rotator are less than 0.2 dB and 0.1 dB, respectively.


1996 ◽  
Vol 118 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Kilryong Han ◽  
Wankyun Chung ◽  
Y. Youm

This paper presents a new closed-form resolution scheme of the forward kinematics of parallel manipulators based on two concepts, local structurization and mechanism partition. This scheme is applied to 6-DOF Stewart platform manipulators and the effectiveness of this scheme is verified through numerical examples. It is shown that one extra sensor is sufficient for both 3-3 SPM and 6-3 SPM to exactly resolve the forward kinematic problem (FKP) in closed form and two sensors for 6-6 SPM. In previous research, at least three extra sensors were needed for closed-form resolution of the FKP for 6-6 SPM. Consequently, the new resolution scheme is efficient to implement and easy for real-time applications for the control of parallel manipulators.


2012 ◽  
Vol 268-270 ◽  
pp. 1416-1421
Author(s):  
Yu Hui Zhang ◽  
Li Wen Guan ◽  
Li Ping Wang ◽  
Yong Zhi Hua

The forward kinematics analysis of parallel manipulator is a difficult issue, which has been studied by many researchers recently. In this paper, in order to solve the difficult issue, a new computing method with higher calculation accuracy, good operation steadiness and faster speed is mentioned. Firstly, the mathematical model of direct kinematics of the Stewart platform is founded, which is nonlinear equations. Secondly, with the rapid development of artificial intelligence technology, Memetic algorithms (MA) are applied to solve the systems of nonlinear equations more and more, replacing the traditional algorithms. MA is a kind of meta-heuristic algorithm combined genetic algorithms (GA) with local search at the end of iteration. Finally, the validity of this algorithm has been testified by simulating iteration operation. The numerical simulation shows that MA can surely and rapidly get global optimum solution and greatly improve convergence rate. Thereby, MA can be widely used as a general-purpose algorithm for solving the forward kinematics of parallel mechanism.


Author(s):  
Ernest D. Fasse ◽  
Albert J. Wavering

Abstract This paper develops extended Kalman filtering algorithms for a generic Gough-Stewart platform assuming realistically available sensors such as length sensors, rate gyroscopes, and accelerometers. The basic idea is to extend existing methods for satellite attitude estimation. The nondeterministic methods are meant to be a practical alternative to existing iterative, deterministic methods for real-time estimation of platform configuration.


Sign in / Sign up

Export Citation Format

Share Document