Analysis of dynamic response of high-railway tunnel under vibrating load induced by high-speed train

Author(s):  
Xiaoping Cao ◽  
Songhong Yan
2021 ◽  
Vol 12 (1) ◽  
pp. 303
Author(s):  
Jianming Du ◽  
Qian Fang ◽  
Jun Wang ◽  
Gan Wang

To comprehensively investigate the characteristics of aerodynamic pressures on a tunnel caused by the whole tunnel passage of a high-speed train at different speeds, we conduct a series of three-dimensional numerical simulations. Based on the field test results obtained by other researchers, the input parameters of our numerical simulation are determined. The process of a high-speed train travelling through a railway tunnel is divided into three stages according to the spatial relationship between the train and tunnel. Stage I: before train nose enters the entrance; Stage II: while the train body runs inside the tunnel; Stage III: after the train tail leaves the exit. The influences of high-speed train speed on the tunnel aerodynamic pressures of these three stages are systematically investigated. The results show that the maximum peak pressure value decreases with increasing distance from the entrance and increases with increasing train speed in Stage I. There is an approximately linear relationship between the three types of maximum peak pressure (positive peak, negative peak, and peak-to-peak pressures) and the power of the train speed in Stage II. These three types of maximum peak pressure values of the points near tunnel portals increase with increasing train speed in Stage III. Moreover, these three types of maximum peak pressure in the tunnel’s middle section at different train speeds are more complex than those near the tunnel portals, and there is one or more turning points due to the superimposed effects of different pressure waves.


Author(s):  
Hongye Gou ◽  
Wenhao Li ◽  
Siqing Zhou ◽  
Yi Bao ◽  
Tianqi Zhao ◽  
...  

The Lanzhou-Xinjiang High-speed Railway runs through a region of over 500[Formula: see text]km that is amenable to frequent winds. The strong wind and rainfall pose a great threat to the safe operation of high-speed trains. To tackle the aforementioned climate challenges, this paper investigates the dynamic response of the high-speed train-track-bridge coupling system under the simultaneous action of winds and rains for the safe operation of trains. Specifically, there are four main objectives: (1) to develop a finite element model to analyze the dynamic response of the train-track-bridge system in windy and raining conditions; (2) to investigate the aerodynamic loads posed to the train-track-bridge system by winds and rains; (3) to evaluate the effects of wind speed and rainfall intensity on the train-track-bridge system; and (4) to assess the safety of trains at different train speeds and under various wind-rain conditions. To this end, this paper first establishes a train-track-bridge model via ANSYS and SIMPACK co-simulation and the aerodynamics models of the high-speed train and bridge through FLUENT to form a safety analysis system for high-speed trains running on the bridge under the wind-rain conditions. Then, the response of the train-track-bridge system under different wind speeds and rainfall intensities is studied. The results show that the effects of winds and rains are coupled. The rule of variation for the train dynamic response with respect to various wind and rain conditions is established, with practical suggestions provided for control of the safe operation of high-speed trains.


Sign in / Sign up

Export Citation Format

Share Document