Virtualizing Real-Time Processing Units in Multi-Processor Systems-on-Chip

Author(s):  
Marcello Cinque ◽  
Gianmaria De Tommasi ◽  
Sara Dubbioso ◽  
Daniele Ottaviano
Author(s):  
Shiyu Wang ◽  
Shengbing Zhang ◽  
Xiaoping Huang ◽  
Hao Lyu

Spaceborne SAR(synthetic aperture radar) imaging requires real-time processing of enormous amount of input data with limited power consumption. Designing advanced heterogeneous array processors is an effective way to meet the requirements of power constraints and real-time processing of application systems. To design an efficient SAR imaging processor, the on-chip data organization structure and access strategy are of critical importance. Taking the typical SAR imaging algorithm-chirp scaling algorithm-as the targeted algorithm, this paper analyzes the characteristics of each calculation stage engaged in the SAR imaging process, and extracts the data flow model of SAR imaging, and proposes a storage strategy of cross-region cross-placement and data sorting synchronization execution to ensure FFT/IFFT calculation pipelining parallel operation. The memory wall problem can be alleviated through on-chip multi-level data buffer structure, ensuring the sufficient data providing of the imaging calculation pipeline. Based on this memory organization and access strategy, the SAR imaging pipeline process that effectively supports FFT/IFFT and phase compensation operations is therefore optimized. The processor based on this storage strategy can realize the throughput of up to 115.2 GOPS, and the energy efficiency of up to 254 GOPS/W can be achieved by implementing 65 nm technology. Compared with conventional CPU+GPU acceleration solutions, the performance to power consumption ratio is increased by 63.4 times. The proposed architecture can not only improve the real-time performance, but also reduces the design complexity of the SAR imaging system, which facilitates excellent performance in tailoring and scalability, satisfying the practical needs of different SAR imaging platforms.


Author(s):  
Daiki Matsumoto ◽  
Ryuji Hirayama ◽  
Naoto Hoshikawa ◽  
Hirotaka Nakayama ◽  
Tomoyoshi Shimobaba ◽  
...  

Author(s):  
David J. Lobina

The study of cognitive phenomena is best approached in an orderly manner. It must begin with an analysis of the function in intension at the heart of any cognitive domain (its knowledge base), then proceed to the manner in which such knowledge is put into use in real-time processing, concluding with a domain’s neural underpinnings, its development in ontogeny, etc. Such an approach to the study of cognition involves the adoption of different levels of explanation/description, as prescribed by David Marr and many others, each level requiring its own methodology and supplying its own data to be accounted for. The study of recursion in cognition is badly in need of a systematic and well-ordered approach, and this chapter lays out the blueprint to be followed in the book by focusing on a strict separation between how this notion applies in linguistic knowledge and how it manifests itself in language processing.


2020 ◽  
pp. 1-25
Author(s):  
Theres Grüter ◽  
Hannah Rohde

Abstract This study examines the use of discourse-level information to create expectations about reference in real-time processing, testing whether patterns previously observed among native speakers of English generalize to nonnative speakers. Findings from a visual-world eye-tracking experiment show that native (L1; N = 53) but not nonnative (L2; N = 52) listeners’ proactive coreference expectations are modulated by grammatical aspect in transfer-of-possession events. Results from an offline judgment task show these L2 participants did not differ from L1 speakers in their interpretation of aspect marking on transfer-of-possession predicates in English, indicating it is not lack of linguistic knowledge but utilization of this knowledge in real-time processing that distinguishes the groups. English proficiency, although varying substantially within the L2 group, did not modulate L2 listeners’ use of grammatical aspect for reference processing. These findings contribute to the broader endeavor of delineating the role of prediction in human language processing in general, and in the processing of discourse-level information among L2 users in particular.


2021 ◽  
pp. 100489
Author(s):  
Paul La Plante ◽  
P.K.G. Williams ◽  
M. Kolopanis ◽  
J.S. Dillon ◽  
A.P. Beardsley ◽  
...  

Author(s):  
Jianlai Chen ◽  
Junchao Zhang ◽  
Yanghao Jin ◽  
Hanwen Yu ◽  
Buge Liang ◽  
...  

2021 ◽  
Vol 10 (7) ◽  
pp. 489
Author(s):  
Kaihua Hou ◽  
Chengqi Cheng ◽  
Bo Chen ◽  
Chi Zhang ◽  
Liesong He ◽  
...  

As the amount of collected spatial information (2D/3D) increases, the real-time processing of these massive data is among the urgent issues that need to be dealt with. Discretizing the physical earth into a digital gridded earth and assigning an integral computable code to each grid has become an effective way to accelerate real-time processing. Researchers have proposed optimization algorithms for spatial calculations in specific scenarios. However, a complete set of algorithms for real-time processing using grid coding is still lacking. To address this issue, a carefully designed, integral grid-coding algebraic operation framework for GeoSOT-3D (a multilayer latitude and longitude grid model) is proposed. By converting traditional floating-point calculations based on latitude and longitude into binary operations, the complexity of the algorithm is greatly reduced. We then present the detailed algorithms that were designed, including basic operations, vector operations, code conversion operations, spatial operations, metric operations, topological relation operations, and set operations. To verify the feasibility and efficiency of the above algorithms, we developed an experimental platform using C++ language (including major algorithms, and more algorithms may be expanded in the future). Then, we generated random data and conducted experiments. The experimental results show that the computing framework is feasible and can significantly improve the efficiency of spatial processing. The algebraic operation framework is expected to support large geospatial data retrieval and analysis, and experience a revival, on top of parallel and distributed computing, in an era of large geospatial data.


Sign in / Sign up

Export Citation Format

Share Document