Four area Load Frequency Control of interconnected hydro-thermal power system by Intelligent PID control technique

Author(s):  
Surya Prakash ◽  
S K Sinha
2014 ◽  
Vol 573 ◽  
pp. 248-253
Author(s):  
Soundarapandian Anbarasi ◽  
Srinivasan Muralidharan

This paper proposes a design of Specification Oriented Compensator (SOC) with a Proportional Integral Derivative (PID) controller for Load frequency Control (LFC) in a thermal power system. The phase margin which is derived from the computationally tuned response of PID controller is considered as a desirable specification and it is used to design the compensator. The different structures of compensator like lead, lag and lead-lag were first simulated in a single area power system and better results are found in Specification Oriented Lead Compensator (SOLC). The simulation study of two area thermal power system with SOLC is then performed and their frequency deviation and tie-line power deviation characteristics are compared with conventional PID controller, Integral controller and also with a non controller system. The Integral Absolute Error (IAE) and Integration Time Absolute Error (ITAE) are considered as performance indices to scrutinize the system robustness. The simulation studies clearly reveal the superiority of the proposed SOLC with PID controller over others in way of enhanced system transient response, improved the stability and robustness of the system. All the simulations in this paper are performed using Matlab software.


Sign in / Sign up

Export Citation Format

Share Document