Consumer preferences for energy efficient room air conditioner in Malaysia: a conjoint approach

Author(s):  
Tan Mong Hock ◽  
M. Shah bin Majid ◽  
H. Abd Rahman
1997 ◽  
Vol 99 (1) ◽  
pp. 3-11 ◽  
Author(s):  
José M. Gil ◽  
Mercedes Sánchez

2003 ◽  
Author(s):  
Detlef Westphalen ◽  
William Murphy

Author(s):  
Andrew Lowenstein ◽  
Steve Slayzak ◽  
Eric Kozubal

A novel liquid-desiccant air conditioner that dries and cools building supply air has been successfully designed, built and tested. The new air conditioner will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort and indoor air quality, as well as providing energy-efficient humidity control. Liquid-desiccant conditioners and regenerators are traditionally implemented as adiabatic beds of contact media that are highly flooded with desiccant. The possibility of droplet carryover into the supply air has limited the sale of these systems in most HVAC applications. The characteristic of the new conditioner and regenerator that distinguishes them from conventional ones is their very low flows of liquid desiccant. Whereas a conventional conditioner operates typically at between 10 and 15 gpm (630 and 946 ml/s) of desiccant per 1000 cfm (0.47 m3/s) of process air, the new conditioner operates at 0.5 gpm (32 ml/s) per 1000 cfm (0.47 m3/s). At these low flooding rates, the supply air will not entrain droplets of liquid desiccant. This brings performance and maintenance for the new liquid-desiccant technology in line with HVAC market expectations. Low flooding rates are practical only if the liquid desiccant is continually cooled in the conditioner or continually heated in the regenerator as the mass exchange of water occurs. This simultaneous heat and mass exchange is accomplished by using the walls of a parallel-plate plastic heat exchanger as the air/desiccant contact surface. Compared to existing solid and liquid desiccant systems, the low-flow technology is more compact, has significantly lower pressure drops and does not “dump” heat back onto the building’s central air conditioner. Tests confirm the high sensible and latent effectiveness of the conditioner, the high COP of the regenerator, and the operation of both components without carryover.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1664 ◽  
Author(s):  
Woojae Kim ◽  
Sungmin Ko ◽  
Myoungjin Oh ◽  
Ie-jung Choi ◽  
Jungwoo Shin

Recent increases in fine and ultrafine dust in South Korea have led to sharp increases in the sale of air purifiers, and that trend is expected to continue. As the sale of air purifiers increases, the energy that is consumed by air purifiers also increases. Therefore, improving the energy efficiency of air purifiers is an important part of improving the overall energy efficiency of society. We studied how different incentive policies affect consumer behavior because encouraging people to buy energy efficient air purifiers is important. We first investigated consumer preferences regarding air purifiers. Stated preference data were gathered from a choice experiment and a mixed logit model was used for the analysis. The results show that the most preferred attribute was price, followed by an eco-label. Based on that result, we conducted a scenario analysis to examine the economic and environmental effects of an incentive policy and eco-labeling. The monetary incentive policy increased the market share for air purifiers with a first-grade energy efficiency rating to 2.2%. The annual electricity use reduction was 5.9 GWh, with a CO2 emission reduction of 2520 tons and a policy monetary benefit of KRW 441,340,922 when we converted the effect of that market share change into economic and environmental terms. Eco-labeling also brought considerable change in the market share. These results provide a reference for implementing policies to encourage consumers to purchase energy efficient air purifiers.


Sign in / Sign up

Export Citation Format

Share Document