The Performance Evaluation of Machine Learning based Techniques via Stator Current and Stray Flux for Broken Bar Fault in Induction Motors

Author(s):  
M. B. Younas ◽  
N. Ullah ◽  
Taner Goktas ◽  
Muslum Arkan ◽  
V. Gurusamy
Author(s):  
Oscar Duque-Perez ◽  
Carlos Del Pozo-Gallego ◽  
Daniel Morinigo-Sotelo ◽  
Wagner Fontes Godoy

Condition monitoring of bearings is an open issue. The use of the stator current to monitor induction motors has been validated as a very advantageous and practical way to detect several types of faults. Nevertheless, for bearing faults the use of vibrations or sound generally offers better results in the accuracy of the detection although with some disadvantages related to the sensors used for monitoring. To improve the performance of bearing monitoring, it is proposed to take advantage of more information available in the current spectra, beyond the usually employed, incorporating the amplitude of a significant number of sidebands around the first eleven harmonics, growing exponentially the number of fault signatures. This is especially interesting for inverter-fed motors. But, in turn, this leads to the problem of overfitting when applying a classifier to perform the fault diagnosis. To overcome this problem, and still exploit all the useful information available in the spectra, it is proposed to use shrinkage methods, which have been lately proposed in machine learning to solve the overfitting issue when the problem has much more variables than examples to classify. A case study with a motor is shown to prove the validity of the proposal


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3392 ◽  
Author(s):  
Oscar Duque-Perez ◽  
Carlos Del Pozo-Gallego ◽  
Daniel Morinigo-Sotelo ◽  
Wagner Fontes Godoy

Condition monitoring of bearings is an open issue. The use of the stator current to monitor induction motors has been validated as a very advantageous and practical way to detect several types of faults. Nevertheless, for bearing faults, the use of vibrations or sound generally offers better results in the accuracy of the detection, although with some disadvantages related to the sensors used for monitoring. To improve the performance of bearing monitoring, it is proposed to take advantage of more information available in the current spectra, beyond the usually employed, incorporating the amplitude of a significant number of sidebands around the first eleven harmonics, growing exponentially the number of fault signatures. This is especially interesting for inverter-fed motors. But, in turn, this leads to the problem of overfitting when applying a classifier to perform the fault diagnosis. To overcome this problem, and still exploit all the useful information available in the spectra, it is proposed to use shrinkage methods, which have been lately proposed in machine learning to solve the overfitting issue when the problem has many more variables than examples to classify. A case study with a motor is shown to prove the validity of the proposal.


2011 ◽  
Vol 58-60 ◽  
pp. 2517-2521
Author(s):  
Qing Xin Zhang ◽  
Hai Bin Li ◽  
Jin Li

Many methods have been used to detect the motor speed. All of these methods are based on the parameter equation of motor and the detection results are influenced by parameters of induction motor more or less. The research of Speed Measurement method without of Motor parameters effect is very significant. Based on the harmonic generated in the air gap magnetic field by the stator core on the alveolar surface, directly by the analysis and testing of stator current harmonic, the rotor speed is detected which is proportional to the speed of frequency components. Experiment results show that this method is good, and the accuracy achieve a desired effect in real time.


Sign in / Sign up

Export Citation Format

Share Document