learning classifiers
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 511)

H-INDEX

32
(FIVE YEARS 11)

Author(s):  
Ali Bou Nassif ◽  
Abdollah Masoud Darya ◽  
Ashraf Elnagar

This work presents a detailed comparison of the performance of deep learning models such as convolutional neural networks, long short-term memory, gated recurrent units, their hybrids, and a selection of shallow learning classifiers for sentiment analysis of Arabic reviews. Additionally, the comparison includes state-of-the-art models such as the transformer architecture and the araBERT pre-trained model. The datasets used in this study are multi-dialect Arabic hotel and book review datasets, which are some of the largest publicly available datasets for Arabic reviews. Results showed deep learning outperforming shallow learning for binary and multi-label classification, in contrast with the results of similar work reported in the literature. This discrepancy in outcome was caused by dataset size as we found it to be proportional to the performance of deep learning models. The performance of deep and shallow learning techniques was analyzed in terms of accuracy and F1 score. The best performing shallow learning technique was Random Forest followed by Decision Tree, and AdaBoost. The deep learning models performed similarly using a default embedding layer, while the transformer model performed best when augmented with araBERT.


2022 ◽  
Vol 12 (2) ◽  
pp. 828
Author(s):  
Tebogo Bokaba ◽  
Wesley Doorsamy ◽  
Babu Sena Paul

Road traffic accidents (RTAs) are a major cause of injuries and fatalities worldwide. In recent years, there has been a growing global interest in analysing RTAs, specifically concerned with analysing and modelling accident data to better understand and assess the causes and effects of accidents. This study analysed the performance of widely used machine learning classifiers using a real-life RTA dataset from Gauteng, South Africa. The study aimed to assess prediction model designs for RTAs to assist transport authorities and policymakers. It considered classifiers such as naïve Bayes, logistic regression, k-nearest neighbour, AdaBoost, support vector machine, random forest, and five missing data methods. These classifiers were evaluated using five evaluation metrics: accuracy, root-mean-square error, precision, recall, and receiver operating characteristic curves. Furthermore, the assessment involved parameter adjustment and incorporated dimensionality reduction techniques. The empirical results and analyses show that the RF classifier, combined with multiple imputations by chained equations, yielded the best performance when compared with the other combinations.


2022 ◽  
pp. 117-123
Author(s):  
Katrin B Johannesdottir ◽  
Henrik Kehlet ◽  
Pelle B Petersen ◽  
Eske K Aasvang ◽  
Helge B D Sørensen ◽  
...  

Background and purpose — Prediction of postoperative outcomes and length of hospital stay (LOS) of patients is vital for allocation of healthcare resources. We investigated the performance of prediction models based on machinelearning algorithms compared with a previous risk stratification model using traditional multiple logistic regression, for predicting the risk of a LOS of > 2 days after fast-track total hip and knee replacement. Patients and methods — 3 different machine learning classifiers were trained on data from the Lundbeck Centre for Fast-track Hip and Knee Replacement Database (LCDB) collected from 9,512 patients between 2016 and 2017. The chosen classifiers were a random forest classifier (RF), a support vector machine classifier with a polynomial kernel (SVM), and a multinomial Naïve-Bayes classifier (NB). Results — Comparing performance measures of the classifiers with the traditional model revealed that all the models had a similar performance in terms of F1 score, accuracy, sensitivity, specificity, area under the receiver operating curve (AUC), and area under the precision-recall curve (AUPRC). A feature importance analysis of the RF classifier found hospital, age, use of walking aid, living alone, and joint operated on to be the most relevant input features. None of the classifiers reached a clinically relevant performance with the input data from the LCDB. Interpretation — Despite the promising prospects of machine-learning practices for disease and risk prediction, none of the machine learning models tested outperformed the traditional multiple regression model in predicting which patients in this cohort had a LOS > 2 days.


2022 ◽  
Vol 32 (2) ◽  
pp. 1007-1024
Author(s):  
Jabeen Sultana ◽  
Anjani Kumar Singha ◽  
Shams Tabrez Siddiqui ◽  
Guthikonda Nagalaxmi ◽  
Anil Kumar Sriram ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document