A New Combination Rule Based on the Average Belief Function

2018 ◽  
Author(s):  
Gabriel Awogbami ◽  
Norbert Agana ◽  
Shabnam Nazmi ◽  
Abdollah Homaifar
2014 ◽  
Vol 8 (1) ◽  
pp. 218-221 ◽  
Author(s):  
Ping Hu ◽  
Zong-yao Wang

We propose a non-monotone line search combination rule for unconstrained optimization problems, the corresponding non-monotone search algorithm is established and its global convergence can be proved. Finally, we use some numerical experiments to illustrate the new combination of non-monotone search algorithm’s effectiveness.


Author(s):  
Ivan Kramosil

A possibility to define a binary operation over the space of pairs of belief functions, inverse or dual to the well-known Dempster combination rule in the same sense in which substraction is dual with respect to the addition operation in the space of real numbers, can be taken as an important problem for the purely algebraic as well as from the application point of view. Or, it offers a way how to eliminate the modification of a belief function obtained when combining this original belief function with other pieces of information, later proved not to be reliable. In the space of classical belief functions definable by set-valued (generalized) random variables defined on a probability space, the invertibility problem for belief functions, resulting from the above mentioned problem of "dual" combination rule, can be proved to be unsolvable up to trivial cases. However, when generalizing the notion of belief functions in such a way that probability space is replaced by more general measurable space with signed measure, inverse belief functions can be defined for a large class of belief functions generalized in the corresponding way. "Dual" combination rule is then defined by the application of the Dempster rule to the inverse belief functions.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2137
Author(s):  
Dingyi Gan ◽  
Bin Yang ◽  
Yongchuan Tang

The Dempster–Shafer evidence theory has been widely applied in the field of information fusion. However, when the collected evidence data are highly conflicting, the Dempster combination rule (DCR) fails to produce intuitive results most of the time. In order to solve this problem, the base belief function is proposed to modify the basic probability assignment (BPA) in the exhaustive frame of discernment (FOD). However, in the non-exhaustive FOD, the mass function value of the empty set is nonzero, which makes the base belief function no longer applicable. In this paper, considering the influence of the size of the FOD and the mass function value of the empty set, a new belief function named the extended base belief function (EBBF) is proposed. This method can modify the BPA in the non-exhaustive FOD and obtain intuitive fusion results by taking into account the characteristics of the non-exhaustive FOD. In addition, the EBBF can degenerate into the base belief function in the exhaustive FOD. At the same time, by calculating the belief entropy of the modified BPA, we find that the value of belief entropy is higher than before. Belief entropy is used to measure the uncertainty of information, which can show the conflict more intuitively. The increase of the value of entropy belief is the consequence of conflict. This paper also designs an improved conflict data management method based on the EBBF to verify the rationality and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document