A novel approach for optimum number and location of FACTS devices on IEEE-30 bus grid using meta-heuristic basd Harmony Search

Author(s):  
M. M. Eissa ◽  
T S Abdel-hameed ◽  
Hossam Gabbar
2020 ◽  
Vol 39 (3) ◽  
pp. 3839-3851
Author(s):  
Arun Nambi Pandian ◽  
Aravindhababu Palanivelu

Optimal placement of FACTS devices attempts to improve power transfer, minimize active power loss, enhance voltage profile and improve voltage stability, thereby making the operation of power systems more flexible and secured. The classical methods experience difficulties in solving the FACTS placement problem (FPP) with discontinuous functions and may diverge or result oscillatory convergence. Besides the number of FACTS devices for placement should be given as an input while solving the problem. The solution methods then attempts to forcefully place all the specified number of devices in the power system, but in reality, the system may require an optimal number of FACTS for placement. The application of swarm-intelligence based optimization algorithms strives to overcome the drawbacks of classical methods. This paper presents a new solution method for FACTS placement problem using improved harmony search optimization (IHSO) with a newly suggested dissonance mechanism that avoids badly composed music, with a view of avoiding the sub-optimal solutions. Besides, the method requires to specify only the maximum number of FACTS devices for placement and places only the optimal number of devices within the specified maximum number of devices. The paper also includes simulation results of three IEEE test systems for exhibiting the superiority of the proposed method.


Author(s):  
Ioannis Kougias ◽  
Thomas Patsialis ◽  
Nicolaos Theodossiou ◽  
Jacques Ganoulis

The interest of those involved in hydroelectricity has been attracted by mini-hydro projects due to their minimal environmental impact and low installation cost. Besides, mini hydros can cooperate with an impressively wide extent of water-related infrastructure, offering a broad potential for investment. In the present chapter, the integrated solution of hydro implementation in water supply systems is presented. Thus, the benefits of a water-supply installation (with constant Q) are extended to energy production. However, defining the optimum operation of such a project is a complicated task, which may involve environmental, hydraulic, technical, and economical parameters. In the present chapter a novel approach is presented, the optimum management of mini hydros in a water supply system with the use of an optimization algorithm (i.e. Harmony Search Algorithm [HAS]). This approach is applied at a site in Northern Greece and is used as a case study of the present chapter.


2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Murugaiya Ramashini ◽  
Pg Emeroylariffion Abas ◽  
Liyanage C De Silva

Bird classification using audio data can be beneficial in assisting ornithologists, bird watchers and environmentalists. However, due to the complex environment in the jungles, it is difficult to identify birds by visual inspection. Hence, identification via acoustical means may be a better option in such an environment. This study aims to classify endemic Bornean birds using their sounds. Thirty-five (35) acoustic features have been extracted from the pre-recorded soundtracks of birds. In this paper, a novel approach for selecting an optimum number of features using Linear Discriminant Analysis (LDA) has been proposed to give better classification accuracy. It is found that using a Nearest Centroid (NC) technique with LDA produces the optimum classification results of bird sounds at 96.7% accuracy with reduced computational power. The low computational complexity is an added advantage for handheld portable devices with minimal computing power, which can be used in birdwatching expeditions. Comparison results have been provided with and without LDA using NC and Artificial Neural Network (ANN) classifiers. It has been demonstrated that both classifiers with LDA outperform those without LDA. Maximum accuracies for both NC and ANN with LDA, with NC and the ANN classifiers requiring 7 and 10 LDAs to achieve the optimum accuracy, respectively, are 96.7%. However, ANN classifier with LDA is more computationally complex. Hence, this is significant as the simpler NC classifier with LDA, which does not require expensive processing power, may be used on the portable and affordable device for bird classification purposes.


Author(s):  
Luong Dinh Le ◽  
Dieu Ngoc Vo ◽  
Sy T. Huynh ◽  
Tuan Minh Nguyen-Hoang ◽  
Pandian Vasant

This paper proposes a hybrid differential evolution (DE) and harmony search (HS) for solving optimal power flow (OPF) problem with FACTS devices including static Var compensator (SVC), thyristor-controlled series compensation (TCSA), and thyristor-controlled phase shifter (TCPS). The proposed hybrid DE-HS is to utilize the advantages of the DE and HS methods to enhance its search ability for dealing with large-scale and complex problems. The proposed method has been tested on the IEEE 30 bus system with the variety of objective functions including quadratic fuel cost, power loss, voltage deviation, and voltage stability index and the obtained results from the proposed hybrid DE-HS have been compared to those from other algorithms. The result comparison has indicated that the proposed hybrid DE-HS algorithm can obtain better solution quality than many other methods. Therefore, the proposed hybrid DE-HS method can be an efficient method for solving the OPF problem incorporating FACTS devices.


Sign in / Sign up

Export Citation Format

Share Document