A Model Predictive Control Approach for Energy Management in Micro-Grid Systems

Author(s):  
A. Elmouatamid ◽  
R. Ouladsine ◽  
M. Bakhouya ◽  
N. El Kamoun ◽  
K. Zine-Dine ◽  
...  
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 168
Author(s):  
Abdellatif Elmouatamid ◽  
Radouane Ouladsine ◽  
Mohamed Bakhouya ◽  
Najib El Kamoun ◽  
Mohammed Khaidar ◽  
...  

The demand for electricity is increased due to the development of the industry, the electrification of transport, the rise of household demand, and the increase in demand for digitally connected devices and air conditioning systems. For that, solutions and actions should be developed for greater consumers of electricity. For instance, MG (Micro-grid) buildings are one of the main consumers of electricity, and if they are correctly constructed, controlled, and operated, a significant energy saving can be attained. As a solution, hybrid RES (renewable energy source) systems are proposed, offering the possibility for simple consumers to be producers of electricity. This hybrid system contains different renewable generators connected to energy storage systems, making it possible to locally produce a part of energy in order to minimize the consumption from the utility grid. This work gives a concise state-of-the-art overview of the main control approaches for energy management in MG systems. Principally, this study is carried out in order to define the suitable control approach for MGs for energy management in buildings. A classification of approaches is also given in order to shed more light on the need for predictive control for energy management in MGs.


2018 ◽  
Vol 12 (14) ◽  
pp. 3405-3413 ◽  
Author(s):  
Vidyasagar Puvvula Sri Rama Venkata Ranga Sai Sesha ◽  
Shanti Swarup Kesanakurthy

Author(s):  
Abdulrahman J. Babqi

A zero-inertia micro-grid is a power system consisting of multiple renewable energy power sources and energy storage systems without the presence of conventional synchronous generators. In such a system, a large variation of the load or source sides during the islanded mode of operation extremely degrades the micro-grid's voltage and frequency stability. This study presents a virtual inertia-based predictive control strategy for a small-scale zero-inertia multiple distributed generators (DGs) micro-grid. In islanded mode, Voltage Model Predictive Control (VMPC) was implemented to control and maintain the voltage and frequency of the micro-grid. However, instabilities in frequency and voltage may rise at the Point of Common Coupling (PCC) due to large variations at both source and load sides. Therefore, the proposed virtual inertia loop calculates the amount of active power to be delivered or absorbed by each DG, and its effect is reflected in the estimated d current component of the VMPC, thus providing better frequency regulation. In grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. The control approach also enables the DG plug and play characteristics. The performance of the control strategy was investigated and verified using the PSCAD/EMTDC software platform.


Sign in / Sign up

Export Citation Format

Share Document