Empirical Evaluation of V2G Round-trip Efficiency

Author(s):  
Wouter Schram ◽  
Nico Brinkel ◽  
Gilbert Smink ◽  
Thijs van Wijk ◽  
Wilfried van Sark
1960 ◽  
Vol 5 (10) ◽  
pp. 326-327
Author(s):  
ERNST G. BEIER
Keyword(s):  

1986 ◽  
Vol 47 (7) ◽  
pp. 1149-1154
Author(s):  
Le Quang Rang ◽  
D. Voslamber

2014 ◽  
Vol E97.B (10) ◽  
pp. 2145-2156
Author(s):  
Xinjie GUAN ◽  
Xili WAN ◽  
Ryoichi KAWAHARA ◽  
Hiroshi SAITO

2018 ◽  
Author(s):  
Timothy Newhouse ◽  
Daria E. Kim ◽  
Joshua E. Zweig

The diverse molecular architectures of terpene natural products are assembled by exquisite enzyme-catalyzed reactions. Successful recapitulation of these transformations using chemical synthesis is hard to predict from first principles and therefore challenging to execute. A means of evaluating the feasibility of such chemical reactions would greatly enable the development of concise syntheses of complex small molecules. Herein, we report the computational analysis of the energetic favorability of a key bio-inspired transformation, which we use to inform our synthetic strategy. This approach was applied to synthesize two constituents of the historically challenging indole diterpenoid class, resulting in a concise route to (–)-paspaline A in 9 steps from commercially available materials and the first pathway to and structural confirmation of emindole PB in 13 steps. This work highlights how traditional retrosynthetic design can be augmented with quantum chemical calculations to reveal energetically feasible synthetic disconnections, minimizing time-consuming and expensive empirical evaluation.


Sign in / Sign up

Export Citation Format

Share Document