The Empirical Evaluation of Machine Learning Models Predicting Round-Trip Time in Cellular Network

Author(s):  
Seunghan Choi ◽  
Changki Kim
Author(s):  
Bruno Astuto Arouche Nunes ◽  
Kerry Veenstra ◽  
William Ballenthin ◽  
Stephanie Lukin ◽  
Katia Obraczka

2021 ◽  
Vol 11 (17) ◽  
pp. 8149
Author(s):  
Emiliano Soares Monteiro ◽  
Rodrigo da Rosa Righi ◽  
Jorge Luis Victória Barbosa ◽  
Antônio Marcos Alberti

As the world population increases and the need for food monoculture farms are using more and more agrochemicals, there is also an increase in the possibility of theft, misuse, environmental damage, piracy of products, and health problems. This article addresses these issues by introducing the agrochemical pervasive traceability model (APTM), which integrates machine learning, sensors, microcontrollers, gamification, and two blockchains. It contributes in two dimensions: (I) the study of the environmental, product piracy and regulatory of agrochemical control; (II) the technological dimension: application of an adequate set of sensors collecting multiple data; modeling and implementation of a system via machine learning for analyzing and predicting the behavior and use of agrochemicals; development of a scoring system via gamification for reverse use of agrochemicals; and presenting a record of transactions in a consortium of two blockchains, simultaneously. Its main advantage is to be a flexible, adaptable, and expansive model. Results indicated that the model has positive aspects, from detecting the agrochemical, its handling, and disposal, recording of transactions, and data visualization along the reverse supply chain. This study obtained a round trip time of 0.510 ms on average; data transfers between layer one and its persistence in the database were between 4 to 5 s. Thus, blockchain nodes consumed only 34 to 38% of CPU and recorded transactions between 2 to 4 s. These results point to a horizon of applicability in real situations within agricultural farms.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2014 ◽  
Vol E97.B (10) ◽  
pp. 2145-2156
Author(s):  
Xinjie GUAN ◽  
Xili WAN ◽  
Ryoichi KAWAHARA ◽  
Hiroshi SAITO

2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document