Study of temporal evolution of electron density and temperature for atmospheric plasma generated from fluid samples using laser induced breakdown spectroscopy

Author(s):  
M. A. Gondal ◽  
Y. W. Maganda ◽  
M. A. Dastageer ◽  
F. F. Al-Adel ◽  
A. Naqvi
2019 ◽  
Vol 34 (12) ◽  
pp. 2378-2384 ◽  
Author(s):  
Ran Hai ◽  
Zhonglin He ◽  
Ding Wu ◽  
Weina Tong ◽  
Harse Sattar ◽  
...  

During laser ablation, the spectral emission intensity, plasma temperature and electron density increased significantly with increasing sample temperature.


Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 50
Author(s):  
Julian Stetzler ◽  
Shijun Tang ◽  
Rosemarie C. Chinni

The purpose of this study was to calculate and compare the plasma temperatures and electron densities from the laser-induced breakdown spectroscopy (LIBS) data collected by NASA’s Martian rover and compare them to samples measured in Earth’s atmosphere. Using the Boltzmann plots, LIBS plasma temperatures were obtained for each site. The analysis focused on titanium lines that were located in the spectral region between 300 and 310 nm. The electron density was measured using the Stark broadening of the hydrogen line at 656.6 nm; the full width at half maximum (FWHM) of this line can be measured and correlated to the electron density of the plasma. Due to a neighboring carbon peak with the hydrogen line seen in many of the spectra from the Martian sites, the FWHM needed to be calculated using a computer program that completed the other side of the hydrogen line and then it calculated the FWHM for those data samples affected by this. The plasma temperatures and electron densities of the Martian sites were compared to LIBS samples taken on Earth.


2019 ◽  
Vol 17 (40) ◽  
Author(s):  
Qusay Adnan Abbas

Aluminum plasma was generated by the irradiation of the targetwith Nd: YAG laser operated at a wavelength of 1064 nm. Theeffect of laser power density and the working pressure on spectrallines generating by laser ablation, were detected by using opticalspectroscopy. The electron density was measured using the Starkbroadening of aluminum lines and the electron temperature byBoltzmann plot method it is one of the methods that are used. Theelectron temperature Te, electron density ne, plasma frequencyand Debye length increased with increasing the laser peakpower. The electron temperature decrease with increasing gaspressure.


2017 ◽  
Vol 67 (6) ◽  
pp. 623 ◽  
Author(s):  
Manoj Kumar Gundawar ◽  
Rajendhar Junjuri ◽  
Ashwin Kumar Myakalwar

<p class="p1">We report the ‘standoff detection’ of explosives at 1 m in laboratory conditions, for the first time in India, using Laser Induced Breakdown Spectroscopy combined with multivariate analysis. The spectra of a set of five secondary explosives were recorded at a distance of 1 m from the focusing as well as collection optics. The plasma characteristics viz., plasma temperature and electron density were estimated from Boltzmann statistics and Stark broadening respectively. Plasma temperature was estimated to be of the order of (10.9 ± 2.1) .103 K and electron density of (3.9 ± 0.5) .1016 cm-3. Using a ratiometric approach, C/H and H/O ratios showed a good correlation with the actual stoichiometric ratios and a partial identification success could be achieved. Finally employing principle component analysis, an excellent classification could be attained.<span class="Apple-converted-space"> </span></p>


Sign in / Sign up

Export Citation Format

Share Document