stark broadening
Recently Published Documents


TOTAL DOCUMENTS

879
(FIVE YEARS 78)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
pp. 4694-4701
Author(s):  
Qusay Adnan Abbas

      The present work investigated the effect of distance from target surface on the parameters of lead plasma excited by 1064nm Q-switched Nd:YAG laser. The excitation was conducted in air, at atmospheric pressure, with pulse length of 5 ns, and at different pulse laser energies. Electron temperature was calculated by Boltzmann plot method based on the PbI emission spectral lines (369.03 nm, 416.98 nm, 523.48, and 561.94 nm). The PbI lines were recorded at different distances from the target surface at laser pulse energies of 260 and 280 mJ. The emission intensity of plasma increased with increasing the lens-to-target distance. The results also detected an increase in electron temperature with increasing the distance between the focal lens and the surface of the target in all laser energies under study. In addition, the electron number density was determined by using the Stark broadening method. The data illustrated that the electron number density was increased with increasing the distance from target surface, reaching the maximum at a distance of 11 cm for all pulse laser energy levels under study.


2021 ◽  
Vol 5 (4) ◽  
pp. 198-210
Author(s):  
M. K. Dosbolayev ◽  
A. B. Tazhen ◽  
T. S. Ramazanov

This paper presents the experimental results on electron, ion temperatures and densities in a pulsed plasma accelerator. The values of electron densities and temperatures were computed using the methods of relative intensities of Hα and Hβ lines, Hβ Stark broadening, and the technique is based on Faraday cup beam current measurements. In this work, a linear optical spectrometer S-100 was used to acquire the emission spectra of hydrogen and air plasmas. In this spectrum, there are some lines due to Fe, Cu, N2, O2, and H2. The series of visible lines in the hydrogen atom spectrum are named the Balmer series. The spectral emissions of iron and copper occur throughout the gas breakdown and ignition of an arc discharge, during the erosion and sputtering of materials. The vacuum chamber and coaxial electrodes were made. The electron temperatures and densities in a pulsed plasma accelerator, measured via relative intensities of spectral lines and Stark broadening, at a charging voltage of a capacitor bank of 3 kV and a working gas pressure in a vacuum chamber of 40 mTorr, were 2.6 eV and 1.66 · 1016 cm−3 for hydrogen plasma. These results were compared with the Faraday cup beam current measurements. However, no match was found. Considering and analyzing this distinction, we concluded that the spectral method of plasma diagnostics provides more accurate results than electrical measurement. The theory of probe measurements can give approximate results in a moving plasma.


Author(s):  
Rafik Hamdi ◽  
Nabil Ben Nessib ◽  
Sylvie Sahal‐Bréchot ◽  
Milan S. Dimitrijević

2021 ◽  
pp. 3560-3569
Author(s):  
Ala F. Ahmed ◽  
Ali A. Yousef

      This study shows the effects of copper material electrode, applied voltage, and different pressure values on electrical discharge plasma. The purpose of the work is the application of the spectral analysis method to obtain accurate results of nitrogen plasma parameters. By using the optical emission spectroscopy (OES), many N2 molecular spectra peaks appeared in the range from 300 to 480 nm. Also, some additional peaks were recorded, corresponding to atomic and ionic lines for nitrogen, target material, and hydrogen, in all samples. The electron density (ne) was calculated from the measurement of Stark broadening effect, which was found to decrease with increasing pressure from 0.1 mbar to 0.8 mbar. The higher emission intensities occurred at 0.2 mbar working pressure and were reduced with higher pressure. The vibrational temperature (Tvib) for N2 increased from 0.17 to 0.33 eV with increasing the pressure from 0.15 mbar to 0.2 mbar, then decreased to 0.25 eV with increasing the pressure to 0.8 mbar. Other plasma parameters were studied, which are electron temperature (Te), plasma frequency of electron ( ), and Debye length (λD).


2021 ◽  
Vol 11 (21) ◽  
pp. 10047
Author(s):  
Ali Barkhordari ◽  
Saeed Karimian ◽  
Antonio Rodero ◽  
Dorota Anna Krawczyk ◽  
Seyed Iman Mirzaei ◽  
...  

The applicability of high voltage electrical discharges for the decomposition of CO2 has been extensively demonstrated. In this study, a new AC parallel-plate plasma reactor is presented which was designed for this purpose. Detailed experimental characterization and simulation of this reactor were performed. Gas chromatography of the exhaust gases enabled calculation of the CO2 conversion and energy efficiency. A conversion factor approximating 25% was obtained which is higher in comparison to existing plasma sources. Optical emission spectroscopy enabled the determination of the emission intensities of atoms and molecules inside the plasma and characterization of the discharge. The Stark broadening of the Balmer hydrogen line Hβ was used for the estimation of the electron density. The obtained densities were of the order of 5 × 1014 cm−3 which indicates that the electron kinetic energy dominated the discharge. The rotational, vibrational, and excitation temperatures were determined from the vibro-rotational band of the OH radical. A 2-temperature plasma was found where the estimated electron temperatures (~18000 K) were higher than the gas temperatures (~2000 K). Finally, a 2-D model using the fluid equations was developed for determining the main processes in the CO2 splitting. The solution to this model, using the finite element method, gave the temporal and spatial behaviors of the formed species densities, the electric potential, and the temperatures of electrons.


2021 ◽  
Vol 75 (8) ◽  
Author(s):  
Abeer Almodlej ◽  
Nabil Ben Nessib ◽  
Milan S. Dimitrijević

Sign in / Sign up

Export Citation Format

Share Document