laser induced plasma
Recently Published Documents


TOTAL DOCUMENTS

1257
(FIVE YEARS 217)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
pp. 167-180
Author(s):  
Alina Saleem ◽  
Yasir Jamil

A rapidly developing technique over the last two years is laser induced break-down spectroscopy (LIBS), also known as laser-induced plasma spectroscopy (LIPS), a non-destructive spectroscopy technique that is mostly used for the analytical study of samples. With this technique, multiple elemental composition of elements are analyzed simultaneously without considering the form of sample that may be solid, liquid, or gas. Moreover, economically it is a very beneficial and valuable technique because no sample preparation is required, and sample consumption is very small. This technique is powerful enough that it can bore a microscopic crater usually in the solid samples to target. This technique has great sensitivity to find the resolution down to a single grain. It has a variety of applications in the field of science such as archeology, soils, environmental protection, and so on.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012012
Author(s):  
Tamara S. Hussein ◽  
Ala F. Ahmed

Abstract In this study, the effect of grafting with Iron (Fe) ratios (0.1, 0.3 and 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared films was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared films is polycrystalline, and Atomic Force Microscope (AFM) images also showed that the increased vaccination with Iron led to an increase in the crustal size ratio and a decrease in surface roughness, The absorption coefficient was calculated and the optical energy gap for the prepared thin films. It was found the absorption decreases and the energy gap decreases with the increase of doping ratio.


2021 ◽  
Vol 24 (4) ◽  
pp. 26-31
Author(s):  
Omar A. Thuhaib ◽  
◽  
Hassan Hashim ◽  

In this work, we analyze the effects of S doping on the structural and optical characteristics of pure cadmium oxide (CdO) filmsat varying concentrations of CdO1−x:Sx(X=0.2, 0.4, and 0.6), Sulfur is a chemical element with the atomic number 16 and the symbol S. The films were created using a laser-induced plasma (LIP) with a wavelength of 1064 nm and a duration of 9 ns at a pressure of 2.5×10−2mbar.X-ray diffraction studies revealed that all of the produced films are polycrystalline. The topography of the film's surface was evaluated using AFM, and the findings revealed that as the amount of doping increases, so does the grain size, along with an increase in the average roughness. The absorbance spectrum of the wavelength range (350-1100) nm was used to investigate the optical characteristics of all films. This rise might be the so-called Borsstein-Moss displacement has been viewed as a result of this. because the lowest layers of the conduction beams are densely packed with Because electrons require more energy to move, it seems as though the energy disparity widens.


2021 ◽  
Vol 144 ◽  
pp. 107446
Author(s):  
Haitao Wang ◽  
Yufeng Wang ◽  
Bin Wang ◽  
Yang Liu ◽  
Wenwu Zhang
Keyword(s):  

2021 ◽  
Vol 2131 (5) ◽  
pp. 052090
Author(s):  
D A Kochuev ◽  
A F Galkin ◽  
A S Chernikov ◽  
R V Chkalov ◽  
A A Voznesenskaya ◽  
...  

Abstract In this paper, we estimate the possibility of applying local thermodynamic equilibrium conditions for a laser-induced plasma channel formed by femtosecond laser radiation in an argon medium at different pressures. The presence of a local thermodynamic equilibrium was determined on the basis of the time of heat exchange of electrons with argon atoms. The Saha equation is used to estimate the concentration of free electrons, the temperature of the laser-induced plasma channel, and its conductivity. A necessary condition for using this ratio was the presence of a state of local thermodynamic equilibrium in the plasma under study.


2021 ◽  
Author(s):  
Haoyu Li ◽  
Feng Yang ◽  
He Cai ◽  
Jiawei Guo ◽  
Qiang Zhou ◽  
...  

Author(s):  
Nisreen Kh. Abdalameer ◽  
Sabah N. Mazhir

This paper investigates the spectroscopy of plasma that resulted from the bombardment of ZnSe by using the optical emission spectroscopic (OES) technique. The plasma can be generated by the reaction between an Nd:YAG laser, with a wavelength of 1064[Formula: see text]nm with a repeat rate of 6[Formula: see text]Hz (as well as 9[Formula: see text]ns pulse duration), and a solid target, where the density of the electron (ne), the temperature of the electron ([Formula: see text]), the frequency of the plasma ([Formula: see text]) and the Debye length ([Formula: see text]) as plasma parameters, in addition to the particles’ number of Debye ([Formula: see text]) and plasma parameter ([Formula: see text]) have been calculated by picking up the spectrum of plasma at different energies (100, 200, 300, 400, 500) mj using Selenium (Se), Zinc (Zn) and the mixture (ZnSe) at ([Formula: see text]). It is found that the electron temperatures of Zn and Se ranged between (0.257–0.267)[Formula: see text]eV and (1.036–1.055) eV, respectively, while that of ZnSe ranged between (1.15–1.28)[Formula: see text]eV. This indicates that the electron temperature of ZnSe is higher than the temperatures of each Zn and Se.


Sign in / Sign up

Export Citation Format

Share Document