A Method of Radar Signal Feature Extraction Based on Fractional Fourier Transform

Author(s):  
Chen Shiwen ◽  
Wang Gongming ◽  
Xing Xiaopeng ◽  
Huang Jie
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1477 ◽  
Author(s):  
Xinqun Liu ◽  
Tao Li ◽  
Xiaolei Fan ◽  
Zengping Chen

The Nyquist folding receiver (NYFR) can achieve a high-probability interception of an ultra-wideband (UWB) signal with fewer devices, while the output of the NYFR is converted into a hybrid modulated signal of the local oscillator (LO) and the received signal, which requires the matching parameter estimation methods. The linear frequency modulation (LFM) signal is a typical low probability of intercept (LPI) radar signal. In this paper, an estimation method of both the Nyquist Zone (NZ) index and the chirp rate for the LFM signal intercepted by NYFR was proposed. First, according to the time-frequency characteristics of the LFM signal, the accurate NZ and the rough chirp rate was estimated based on least squares (LS) and random sample consensus (RANSAC). Then, the information of the LO was removed from the hybrid modulated signal by the known NZ, and the precise chirp rate was obtained by using the fractional Fourier transform (FrFT). Moreover, a fast search method of FrFT optimal order was presented, which could obviously reduce the computational complexity. The simulation demonstrated that the proposed method could precisely estimate the parameters of the hybrid modulated output signal of the NYFR.


Author(s):  
Dinesh Bhatia ◽  
Animesh Mishra

The role of ECG analysis in the diagnosis of cardio-vascular ailments has been significant in recent times. Although effective, the present computational algorithms lack accuracy, and no technique till date is capable of predicting the onset of a CVD condition with precision. In this chapter, the authors attempt to formulate a novel mapping technique based on feature extraction using fractional Fourier transform (FrFT) and map generation using self-organizing maps (SOM). FrFT feature extraction from the ECG data has been performed in a manner reminiscent of short time Fourier transform (STFT). Results show capability to generate maps from the isolated ECG wavetrains with better prediction capability to ascertain the onset of CVDs, which is not possible using conventional algorithms. Promising results provide the ability to visualize the data in a time evolution manner with the help of maps and histograms to predict onset of different CVD conditions and the ability to generate the required output with unsupervised training helping in greater generalization than previous reported techniques.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Rui Zhang ◽  
Chen Meng ◽  
Cheng Wang ◽  
Qiang Wang

The compressed sensing theory, which has received great attention in the field of radar technology, can effectively reduce the data rate of high-resolution radar imaging systems and solve the problem of collecting, storing, and transmitting large amounts of data in radar systems. Through the study of radar signal processing theory, it can be found that the echo of radar LFM transmit signal has sparse characteristics in the distance upward; based on this, we can consider using the theory of compressed sensing in the processing of radar echo to optimize the processing. In this paper, a fast iterative shrinkage-thresholding reconstruction algorithm based on protection coefficients is proposed. Under the new scheme, firstly, the LFM echo signal’s good sparse representation is obtained by using the time-frequency sparse characteristics of the LFM echo signal under the fractional Fourier transform; all reconstruction coefficients are analyzed in the iterative process. Then, the coefficients related to the feature will be protected from threshold shrinkage to reduce information loss. Finally, the effectiveness of the proposed method is verified through simulation experiments and application example analysis. The experimental results show that the reconstruction error of this method is lower and the reconstruction effect is better compared with the existing reconstruction algorithms.


2016 ◽  
pp. 931-936
Author(s):  
Hongfang Chen ◽  
Yanqiang Sun ◽  
Zhaoyao Shi ◽  
Jiachun Lin ◽  
Zaihua Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document