scholarly journals Nyquist Zone Index and Chirp Rate Estimation of LFM Signal Intercepted by Nyquist Folding Receiver Based on Random Sample Consensus and Fractional Fourier Transform

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1477 ◽  
Author(s):  
Xinqun Liu ◽  
Tao Li ◽  
Xiaolei Fan ◽  
Zengping Chen

The Nyquist folding receiver (NYFR) can achieve a high-probability interception of an ultra-wideband (UWB) signal with fewer devices, while the output of the NYFR is converted into a hybrid modulated signal of the local oscillator (LO) and the received signal, which requires the matching parameter estimation methods. The linear frequency modulation (LFM) signal is a typical low probability of intercept (LPI) radar signal. In this paper, an estimation method of both the Nyquist Zone (NZ) index and the chirp rate for the LFM signal intercepted by NYFR was proposed. First, according to the time-frequency characteristics of the LFM signal, the accurate NZ and the rough chirp rate was estimated based on least squares (LS) and random sample consensus (RANSAC). Then, the information of the LO was removed from the hybrid modulated signal by the known NZ, and the precise chirp rate was obtained by using the fractional Fourier transform (FrFT). Moreover, a fast search method of FrFT optimal order was presented, which could obviously reduce the computational complexity. The simulation demonstrated that the proposed method could precisely estimate the parameters of the hybrid modulated output signal of the NYFR.

2018 ◽  
Vol 173 ◽  
pp. 03044
Author(s):  
FAN Junhui ◽  
PENG Hua ◽  
WEI Chi

To overcome the performance degradation of conventional Chirp parameters estimation methods in underwater acoustic multipath channels, a novel parameters estimation method based on Fractional Fourier transform (FRFT) and Fourier transform (FFT) was proposed. Firstly, the Chirp rate was estimated by searching for the best degree of Chirp after Fractional Fourier transform. Secondly, the Chirp signal turned into a single-frequency signal by means of Chirp rate equalization. Finally, FFT was applied to estimate the initial frequency. The simulation experiment show that the proposed algorithm enhanced about 1dB RMSE performance on Chirp initial frequency compared with FRFT while the computational complexity is similar to FRFT.


Author(s):  
Seema Sud

In this paper, we discuss an improved demodulation scheme using the Fractional Fourier Transform (FrFT) for a modulation scheme employing chirp rate shift keying (CrSK). CrSK in conjunction with the FrFT enable very high order, e.g. more than 32-ary modulation schemes to be achievable with good bit error rate (BER) performance, even in the absence of coding, thereby overcoming limitations of traditional schemes including phase shift keying (PSK) or QAM (quadrature amplitude modulation). By using an FrFT-based demodulator, we expand our demodulation degrees of freedom from a single (e.g. frequency) axis to an entire time-frequency domain, called the Wigner Distribution (WD). We show how the proposed demodulation scheme using the FrFT improves over past approaches by more than 7 dB, enabling us to achieve close to 4-ary performance with a 32-ary modulation scheme. This enables future systems to operate at 5 bits/s/Hz bandwidth efficiency, enhancing bandwidth utilization for future generation, high data rate, applications, such as internet.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Rui Zhang ◽  
Chen Meng ◽  
Cheng Wang ◽  
Qiang Wang

The compressed sensing theory, which has received great attention in the field of radar technology, can effectively reduce the data rate of high-resolution radar imaging systems and solve the problem of collecting, storing, and transmitting large amounts of data in radar systems. Through the study of radar signal processing theory, it can be found that the echo of radar LFM transmit signal has sparse characteristics in the distance upward; based on this, we can consider using the theory of compressed sensing in the processing of radar echo to optimize the processing. In this paper, a fast iterative shrinkage-thresholding reconstruction algorithm based on protection coefficients is proposed. Under the new scheme, firstly, the LFM echo signal’s good sparse representation is obtained by using the time-frequency sparse characteristics of the LFM echo signal under the fractional Fourier transform; all reconstruction coefficients are analyzed in the iterative process. Then, the coefficients related to the feature will be protected from threshold shrinkage to reduce information loss. Finally, the effectiveness of the proposed method is verified through simulation experiments and application example analysis. The experimental results show that the reconstruction error of this method is lower and the reconstruction effect is better compared with the existing reconstruction algorithms.


Author(s):  
YangQuan Chen ◽  
Rongtao Sun ◽  
Anhong Zhou

A fractional Fourier transform (FrFT) based estimation method is introduced in this paper to analyze the long range dependence (LRD) in time series. The degree of LRD can be characterized by the Hurst parameter. The FrFT-based estimation of Hurst parameter proposed in this paper can be implemented efficiently allowing very large data set. We used fractional Gaussian noises (FGN) which typically possesses long-range dependence with known Hurst parameters to test the accuracy of the proposed Hurst parameter estimator. For justifying the advantage of the proposed estimator, some other existing Hurst parameter estimation methods, such as wavelet-based method and a global estimator based on dispersional analysis, are compared. The proposed estimator can process the very long experimental time series locally to achieve a reliable estimation of the Hurst parameter.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


2014 ◽  
Vol 989-994 ◽  
pp. 4001-4004 ◽  
Author(s):  
Yan Jun Wu ◽  
Gang Fu ◽  
Yu Ming Zhu

As a generalization of Fourier transform, the fractional Fourier Transform (FRFT) contains simultaneity the time-frequency information of the signal, and it is considered a new tool for time-frequency analysis. This paper discusses some steps of FRFT in signal detection based on the decomposition of FRFT. With the help of the property that a LFM signal can produce a strong impulse in the FRFT domain, the signal can be detected conveniently. Experimental analysis shows that the proposed method is effective in detecting LFM signals.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 997 ◽  
Author(s):  
Zhang ◽  
Zhou ◽  
Wang

Orthogonal frequency division multiplexing (OFDM) systems have inherent symmetric properties, such as coding and decoding, constellation mapping and demapping, inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) operations corresponding to multi-carrier modulation and demodulation, and channel estimation is a necessary module to resist channel fading in the OFDM system. However, the noise in the channel will significantly affect the accuracy of channel estimation, which further affects the recovery quality of the final received signals. Therefore, this paper proposes an efficient noise suppression channel estimation method for OFDM systems based on adaptive weighted averaging. The basic idea of the proposed method is averaging the last few channel coefficients obtained from coarse estimation to suppress the noise effect, while the average frame number is adaptively adjusted by combining Doppler spread and signal-to-noise ratio (SNR) information. Meanwhile, to better combat the negative effect brought by Doppler spread and inter-carrier interference (ICI), the proposed method introduces a weighting factor to correct the weighted value of each frame in the averaging process. Simulation results show that the proposed channel estimation method is effective and provides better performance compared with other conventional channel estimation methods.


2018 ◽  
Vol 10 (11) ◽  
pp. 1719 ◽  
Author(s):  
Yunyun Dong ◽  
Weili Jiao ◽  
Tengfei Long ◽  
Guojin He ◽  
Chengjuan Gong

Image registration is a core technology of many different image processing areas and is widely used in the remote sensing community. The accuracy of image registration largely determines the effect of subsequent applications. In recent years, phase correlation-based image registration has drawn much attention because of its high accuracy and efficiency as well as its robustness to gray difference and even slight changes in content. Many researchers have reported that the phase correlation method can acquire a sub-pixel accuracy of 1 / 10 or even 1 / 100 . However, its performance is acquired only in the case of translation, which limits the scope of the application of the method. However, there are few reports on the estimation of scales and angles based on the phase correlation method. To take advantage of the high accuracy property and other merits of phase correlation-based image registration and extend it to estimate the similarity transform, we proposed a novel algorithm, the Multilayer Polar Fourier Transform (MPFT), which uses a fast and accurate polar Fourier transform with different scaling factors to calculate the log-polar Fourier transform. The structure of the polar grids of MPFT is more similar to the one of the log-polar grid. In particular, for rotation estimation only, the polar grid of MPFT is the calculation grid. To validate its effectiveness and high accuracy in estimating angles and scales, both qualitative and quantitative experiments were carried out. The quantitative experiments included a numerical simulation as well as synthetic and real data experiments. The experimental results showed that the proposed method, MPFT, performs better than the existing phase correlation-based similarity transform estimation methods, the Pseudo-polar Fourier Transform (PPFT) and the Multilayer Fractional Fourier Transform method (MLFFT), and the classical feature-based registration method, Scale-Invariant Feature Transform (SIFT), and its variant, ms-SIFT.


Sign in / Sign up

Export Citation Format

Share Document