Comparison of feature selection methods in voice based emotion recognition systems

Author(s):  
Tolga Atalay ◽  
Deger Ayata ◽  
Yusuf Yaslan
2016 ◽  
Vol 11 (1) ◽  
pp. 9-23 ◽  
Author(s):  
Cristian Torres-Valencia ◽  
Mauricio Álvarez-López ◽  
Álvaro Orozco-Gutiérrez

2016 ◽  
Vol 6 (4) ◽  
pp. 243-253 ◽  
Author(s):  
Christina Brester ◽  
Eugene Semenkin ◽  
Maxim Sidorov

Abstract If conventional feature selection methods do not show sufficient effectiveness, alternative algorithmic schemes might be used. In this paper we propose an evolutionary feature selection technique based on the two-criterion optimization model. To diminish the drawbacks of genetic algorithms, which are applied as optimizers, we design a parallel multicriteria heuristic procedure based on an island model. The performance of the proposed approach was investigated on the Speech-based Emotion Recognition Problem, which reflects one of the most essential points in the sphere of human-machine communications. A number of multilingual corpora (German, English and Japanese) were involved in the experiments. According to the results obtained, a high level of emotion recognition was achieved (up to a 12.97% relative improvement compared with the best F-score value on the full set of attributes).


Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-46
Author(s):  
Kui Yu ◽  
Lin Liu ◽  
Jiuyong Li

In this article, we aim to develop a unified view of causal and non-causal feature selection methods. The unified view will fill in the gap in the research of the relation between the two types of methods. Based on the Bayesian network framework and information theory, we first show that causal and non-causal feature selection methods share the same objective. That is to find the Markov blanket of a class attribute, the theoretically optimal feature set for classification. We then examine the assumptions made by causal and non-causal feature selection methods when searching for the optimal feature set, and unify the assumptions by mapping them to the restrictions on the structure of the Bayesian network model of the studied problem. We further analyze in detail how the structural assumptions lead to the different levels of approximations employed by the methods in their search, which then result in the approximations in the feature sets found by the methods with respect to the optimal feature set. With the unified view, we can interpret the output of non-causal methods from a causal perspective and derive the error bounds of both types of methods. Finally, we present practical understanding of the relation between causal and non-causal methods using extensive experiments with synthetic data and various types of real-world data.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Sign in / Sign up

Export Citation Format

Share Document