Integration of Deep Sparse Autoencoder and Particle Swarm Optimization to Develop a Recommender System

Author(s):  
Milad Ahmadian ◽  
Mahmood Ahmadi ◽  
Sajad Ahmadian ◽  
Seyed Mohammad Jafar Jalali ◽  
Abbas Khosravi ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2347
Author(s):  
Ibomoiye Domor Mienye ◽  
Yanxia Sun

Heart disease is the leading cause of death globally. The most common type of heart disease is coronary heart disease, which occurs when there is a build-up of plaque inside the arteries that supply blood to the heart, making blood circulation difficult. The prediction of heart disease is a challenge in clinical machine learning. Early detection of people at risk of the disease is vital in preventing its progression. This paper proposes a deep learning approach to achieve improved prediction of heart disease. An enhanced stacked sparse autoencoder network (SSAE) is developed to achieve efficient feature learning. The network consists of multiple sparse autoencoders and a softmax classifier. Additionally, in deep learning models, the algorithm’s parameters need to be optimized appropriately to obtain efficient performance. Hence, we propose a particle swarm optimization (PSO) based technique to tune the parameters of the stacked sparse autoencoder. The optimization by the PSO improves the feature learning and classification performance of the SSAE. Meanwhile, the multilayer architecture of autoencoders usually leads to internal covariate shift, a problem that affects the generalization ability of the network; hence, batch normalization is introduced to prevent this problem. The experimental results show that the proposed method effectively predicts heart disease by obtaining a classification accuracy of 0.973 and 0.961 on the Framingham and Cleveland heart disease datasets, respectively, thereby outperforming other machine learning methods and similar studies.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document