Evaluation of Design Optimisation Techniques in Structural Framing

Author(s):  
Luke Briese ◽  
Timothy Mark Gregory ◽  
Navid Mohajer ◽  
Matthew Watson ◽  
Shady Mohamed ◽  
...  
2013 ◽  
Vol 117 (1195) ◽  
pp. 871-895 ◽  
Author(s):  
J. Mariens ◽  
A. Elham ◽  
M. J. L. van Tooren

Abstract Weight estimation methods are categorised in different classes based on their level of fidelity. The lower class methods are based on statistical data, while higher class methods use physics based calculations. Statistical weight estimation methods are usually utilised in early design stages when the knowledge of designers about the new aircraft is limited. Higher class methods are applied in later design steps when the design is mature enough. Lower class methods are sometimes preferred in later design stages, even though the designers have enough knowledge about the design to use higher class methods. In high level multidisciplinary design optimisation (MDO) fidelity is often sacrificed to obtain models with shorter computation times. There is always a compromise required to select the proper weight estimation method for an MDO project. An investigation has been performed to study the effect of using different weight estimation methods, with low and medium levels of fidelity, on the results of a wing design using multidisciplinary design optimisation techniques. An MDO problem was formulated to design the wing planform of a typical turboprop and a turbofan passenger aircraft. The aircraft maximum take-off weight was selected as the objective function. A quasi-three-dimensional aerodynamic solver was developed to calculate the wing aerodynamic characteristics. Five various statistical methods and a quasi-analytical method are used to estimate the wing structural weight. These methods are compared to each other by analysing their accuracy and sensitivity to different design variables. The results of the optimisations showed that the optimum wing shape is affected by the method used to estimate the wing weight. Using different weight estimation methods also strongly affects the optimisation convergence history and computational time.


Sign in / Sign up

Export Citation Format

Share Document