Contouring medial surface of thin plate structure using local marching cubes

Author(s):  
T. Fujimori ◽  
H. Suzuki ◽  
Y. Kobayashi ◽  
K. Kase
2005 ◽  
Vol 5 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Tomoyuki Fujimori ◽  
Hiromasa Suzuki ◽  
Yohei Kobayashi ◽  
Kiwamu Kase

This paper describes a new algorithm for contouring a medial surface from CT (computed tomography) data of a thin-plate structure. Thin-plate structures are common in mechanical structures, such as car body shells. When designing thin-plate structures in CAD (computer-aided design) and CAE (computer-aided engineering) systems, their shapes are usually represented as surface models associated with their thickness values. In this research, we are aiming at extracting medial surface models of thin-plate structures from their CT data for use in CAD and CAE systems. Commonly used isosurfacing methods, such as marching cubes, are not applicable to contour the medial surface. Therefore, we first extract medial cells (cubes comprising eight neighboring voxels) from the CT data using a skeletonization method to apply the marching cubes algorithm for extracting the medial surface. It is not, however, guaranteed that the marching cubes algorithm can contour those medial cells (in short, not “marching cubeable”). In this study, therefore we developed cell operations that correct topological connectivity to guarantee such marching cubeability. We then use this method to assign virtual signs to the voxels to apply the marching cubes algorithm to generate triangular meshes of a medial surface and map the thicknesses of thin-plate structures to the triangle meshes as textures. A prototype system was developed to verify some experimental results.


Author(s):  
Jinhui Jiang ◽  
Huangfei Kong ◽  
Hongji Yang ◽  
Jianding Chen

Load identification has long been a difficult issue for distributed load acting on structures. In this paper, the dynamic load identification technology based on the modal coordinate transformation theory is developed for dealing with identification problem of the two-dimensional thin plate structure. For the distributed dynamic load acting on a plate, we decompose it with the mode functions in the modal coordinate space and establish the liner relationship between the time function coefficients of the distributed load and the modal excitations which are solved out based on the known response data of the measuring points. Then the distributed dynamic load is rebuilt based on orthogonal decomposition and inverse Fourier Transform method. The simulation examples and elastic thin plate structure tests show that the proposed method has a good accuracy with the allowable error range and is reliable and practical. The proposed method can be also used for load identification of complicated structures in a wide range of engineering applications.


2020 ◽  
Vol 471 ◽  
pp. 115187 ◽  
Author(s):  
Jaesoon Jung ◽  
Cheol-Ho Jeong ◽  
Jakob Søndergaard Jensen

Sign in / Sign up

Export Citation Format

Share Document