An efficient power control strategy for small fixed-pitch wind turbine to extend the operating range to high wind speed region

Author(s):  
G. Brando ◽  
D. P. Coiro ◽  
A. Dannier
2016 ◽  
Vol 31 (10) ◽  
pp. 6980-6991 ◽  
Author(s):  
Carlos Lumbreras ◽  
Juan Manuel Guerrero ◽  
Pablo Garcia ◽  
Fernando Briz ◽  
David Daz Reigosa

2018 ◽  
Vol 1 (02) ◽  
pp. 15-20
Author(s):  
Luthfi - Hakim ◽  
Achmad Rijano ◽  
Mochamad Muzaki

 The Darrieus-Savonius (DS) wind turbine has been widely developed with the aim of improving turbine performance that has been designed. DS wind turbine is a combination of two type of wind turbines, that is Darrieus and Savonius turbine, both turbines are intentionally developed In order to get self-starting on turbine Savonius with low wind speed and able to extract the speed of engine into energy well at high wind speed through Cherrie Darrieus. This study was conducted to analyze the performance of the DS turbine in the wind speed to be energized through the turbine rotation and power to be generated. The DS wind turbine is designed to start rotating at a speed of 8 m/s in velocity of wind, meanwhile the maximum power generated by turbine is 48,23 Watts. 


Author(s):  
Carlos Lumbreras ◽  
Juan M. Guerrero ◽  
Pablo Garcia ◽  
Fernando Briz ◽  
David Diaz

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Davide Astolfi ◽  
Francesco Castellani ◽  
Andrea Lombardi ◽  
Ludovico Terzi

The financial sustainability and the profitability of wind farms strongly depend on the efficiency of the conversion of wind kinetic energy. This motivates further research about the improvement of wind turbine power curve. If the site is characterized by a considerable occurrence of very high wind speeds, it can become particularly profitable to update the power curve management. This is commonly done by raising the cut-out velocity and the high wind speed cut-in regulating the hysteresis logic. Doing this, on one side, the wind turbine possibly undergoes strong vibration and loads. On the other side, the energy improvement is almost certain and the point is quantifying precisely its magnitude. In this work, the test case of an onshore wind farm in Italy is studied, featuring 17 2.3 MW wind turbines. Through the analysis of supervisory control and data acquisition (SCADA) data, the energy improvement from the extension of the power curve in the high wind speed region is simulated and measured. This could be useful for wind farm owners evaluating the realistic profitability of the installation of the power curve upgrade on their wind turbines. Furthermore, the present work is useful for the analysis of wind turbine behavior under extremely stressing load conditions.


Author(s):  
Hiroyuki MIYAUCHI ◽  
Nobuo KATO ◽  
Hirokazu ICHIKAWA ◽  
Takanori SASAKI ◽  
Kyoji TANAKA

1979 ◽  
Vol 57 (10) ◽  
pp. 1985-1997 ◽  
Author(s):  
Kerwin J. Finley

Numbers of ringed seals hauled out on the ice began to increase in early June. Numbers on the ice were highest from 0900 to 1500 hours Central Standard Time and lowest (average 40–50% of peak) in early morning. Seals commonly remained on the ice for several hours, and occasionally (during calm weather) for > 48 h. Numbers on the ice were reduced on windy days and possibly also on unusually warm, bright and calm days. Seals tended to face away from the wind (particularly with high wind speed) and oriented broadside to the sun. Seals usually occurred singly (60–70% of all groups) at their holes.Numbers of seals hauled out at Freemans Cove remained relatively constant during June (maximum density 4.86/km2), whereas at Aston Bay numbers increased dramatically to a maximum density of 10.44/km2 in late June. The increase was thought to be due to an influx of seals abandoning unstable ice. The density of seal holes at Freemans Cove (5.92/km2) was much higher than at Aston Bay (2.73/km2). The ratio of holes to the maximum numbers of seals (1.12:1) at Freemans Cove represents a first estimate of this relationship in an apparently stable population.


2017 ◽  
Vol 56 (8) ◽  
pp. 2239-2258 ◽  
Author(s):  
Jonathan D. Wille ◽  
David H. Bromwich ◽  
John J. Cassano ◽  
Melissa A. Nigro ◽  
Marian E. Mateling ◽  
...  

AbstractAccurately predicting moisture and stability in the Antarctic planetary boundary layer (PBL) is essential for low-cloud forecasts, especially when Antarctic forecasters often use relative humidity as a proxy for cloud cover. These forecasters typically rely on the Antarctic Mesoscale Prediction System (AMPS) Polar Weather Research and Forecasting (Polar WRF) Model for high-resolution forecasts. To complement the PBL observations from the 30-m Alexander Tall Tower! (ATT) on the Ross Ice Shelf as discussed in a recent paper by Wille and coworkers, a field campaign was conducted at the ATT site from 13 to 26 January 2014 using Small Unmanned Meteorological Observer (SUMO) aerial systems to collect PBL data. The 3-km-resolution AMPS forecast output is combined with the global European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAI), SUMO flights, and ATT data to describe atmospheric conditions on the Ross Ice Shelf. The SUMO comparison showed that AMPS had an average 2–3 m s−1 high wind speed bias from the near surface to 600 m, which led to excessive mechanical mixing and reduced stability in the PBL. As discussed in previous Polar WRF studies, the Mellor–Yamada–Janjić PBL scheme is likely responsible for the high wind speed bias. The SUMO comparison also showed a near-surface 10–15-percentage-point dry relative humidity bias in AMPS that increased to a 25–30-percentage-point deficit from 200 to 400 m above the surface. A large dry bias at these critical heights for aircraft operations implies poor AMPS low-cloud forecasts. The ERAI showed that the katabatic flow from the Transantarctic Mountains is unrealistically dry in AMPS.


Sign in / Sign up

Export Citation Format

Share Document