Voltage Support Capacity During Grid Disturbances Based on Flexible Excitation System with ESS

Author(s):  
Liping Cheng ◽  
Jiancheng Zhang ◽  
Hongtao Xiong ◽  
Tiantian Zhang ◽  
Yuwei Peng ◽  
...  
2016 ◽  
Vol 136 (1) ◽  
pp. 18-24
Author(s):  
Daisuke Hiramatsu ◽  
Yoichi Uemura ◽  
Dai Nozaki ◽  
Shinji Mukoyama ◽  
Kazuma Tsujikawa ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3222
Author(s):  
Duc Nguyen Huu

Increasing offshore wind farms are rapidly installed and planned. However, this will pose a bottle neck challenge for long-distance transmission as well as inherent variation of their generating power outputs to the existing AC grid. VSC-HVDC links could be an effective and flexible method for this issue. With the growing use of voltage source converter high-voltage direct current (VSC-HVDC) technology, the hybrid VSC-HVDC and AC system will be a next-generation transmission network. This paper analyzes the contribution of the multi VSC-HVDC system on the AC voltage stability of the hybrid system. A key contribution of this research is proposing a novel adaptive control approach of the VSC-HVDC as a so-called dynamic reactive power booster to enhance the voltage stability of the AC system. The core idea is that the novel control system is automatically providing a reactive current based on dynamic frequency of the AC system to maximal AC voltage support. Based on the analysis, an adaptive control method applied to the multi VSC-HVDC system is proposed to realize maximum capacity of VSC for reactive power according to the change of the system frequency during severe faults of the AC grid. A representative hybrid AC-DC network based on Germany is developed. Detailed modeling of the hybrid AC-DC network and its proposed control is derived in PSCAD software. PSCAD simulation results and analysis verify the effective performance of this novel adaptive control of VSC-HVDC for voltage support. Thanks to this control scheme, the hybrid AC-DC network can avoid circumstances that lead to voltage instability.


Sign in / Sign up

Export Citation Format

Share Document