scholarly journals A Novel Adaptive Control Approach Based on Available Headroom of the VSC-HVDC for Enhancement of the AC Voltage Stability

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3222
Author(s):  
Duc Nguyen Huu

Increasing offshore wind farms are rapidly installed and planned. However, this will pose a bottle neck challenge for long-distance transmission as well as inherent variation of their generating power outputs to the existing AC grid. VSC-HVDC links could be an effective and flexible method for this issue. With the growing use of voltage source converter high-voltage direct current (VSC-HVDC) technology, the hybrid VSC-HVDC and AC system will be a next-generation transmission network. This paper analyzes the contribution of the multi VSC-HVDC system on the AC voltage stability of the hybrid system. A key contribution of this research is proposing a novel adaptive control approach of the VSC-HVDC as a so-called dynamic reactive power booster to enhance the voltage stability of the AC system. The core idea is that the novel control system is automatically providing a reactive current based on dynamic frequency of the AC system to maximal AC voltage support. Based on the analysis, an adaptive control method applied to the multi VSC-HVDC system is proposed to realize maximum capacity of VSC for reactive power according to the change of the system frequency during severe faults of the AC grid. A representative hybrid AC-DC network based on Germany is developed. Detailed modeling of the hybrid AC-DC network and its proposed control is derived in PSCAD software. PSCAD simulation results and analysis verify the effective performance of this novel adaptive control of VSC-HVDC for voltage support. Thanks to this control scheme, the hybrid AC-DC network can avoid circumstances that lead to voltage instability.

2014 ◽  
Vol 905 ◽  
pp. 421-426 ◽  
Author(s):  
Seung Hyun Kim ◽  
Woo Cheol Jeong ◽  
Eel Hwan Kim

Modular multilevel Converter (MMC) is a new type of voltage source converter (VSC) topology. The use of this converter in a high-voltage direct current (HVDC) system is called by a MMC-HVDC system. The MMC-HVDC has the advantage in terms of scalability, performance, and efficiency over two-and three-level VSC-HVDC. In this paper, the MMC-HVDC system is used to connect between main grid in Jeju Island and virtual offshore wind farms. The aim is to transfer the power from offshore wind farm to the main grid and to compensate reactive power for the main grid. The simulation is carried out by using PSCAD/EMTDC program, and the results will confirm the effectiveness of the proposed control method.


Author(s):  
Prabodha Kumar Rath ◽  
Kanhu Charan Bhuyan

<span lang="EN-US">This paper proposes a model of a VSC (voltage source converter) based Back to Back HVDC system and its control technique under fault condition. From the mathematical model of the system relationship between the controlling and the controlled variables is determined to control the system parameters. An appropriate vector control technique is used to control active and reactive power and to maintain DC link voltage. The proposed controlling unit consists of outer control loop and inner control loop which effectively damped out the system oscillation and maintains the system stability. The validity of the model and the feasibility of the control method have been proved by the simulation results. In this paper the system performance is studied under fault condition is studied.</span>


2021 ◽  
Vol 11 (18) ◽  
pp. 8637
Author(s):  
Bilawal Rehman ◽  
Atiq ur Rehman ◽  
Waqar Ahmad Khan ◽  
Irfan Sami ◽  
Jong-Suk Ro

This paper presents a detailed analysis of commutation failure, AC/DC power flow, and voltage stability of multi-infeed high-voltage direct current (HVDC). The use of HVDC power transmission technology has become common in modern power systems. During the past two decades, HVDC technology has been extensively used for long-distance bulk power transmission to remote areas. Throughout the world, the demand for power has drastically increased in recent years due to industrialization; such situations make HVDC an economic candidate because the distance between power generation plants and load areas is significantly very long. The line-commutated converter (LCC) technology-based HVDC system is well more mature than other available conversion schemes (i.e., voltage source converters), and it is widely used in high-power projects. China had approximately 50 HVDC–LCC links in 2020, and a single LCC-based link with the highest capacity is 12 GW. The installation of several HVDC links in an existing power network has led to a situation where two or more HVDC links terminate in the electric vicinity of each other’s AC network or even in same AC busbar. Such scenarios are termed multi-infeed HVDC system. Multi-infeed HVDC systems bring various challenges related to voltage stability, local and concurrent commutation failure, and AC/DC power flow. Here, the literature available on these phenomena of LCC-based HVDC is discussed for future research. The assumptions and drawbacks of various techniques used for investigating the mentioned phenomena are also highlighted.


2013 ◽  
Vol 14 (2) ◽  
pp. 123-138
Author(s):  
Madhan Mohan ◽  
Bhim Singh ◽  
Bijaya Ketan Panigrahi

Abstract: A New Voltage Source Converter (VSC) based on neutral clamped three-level circuit is proposed for High Voltage DC (HVDC) system. The proposed VSC is designed in a multipulse configuration. The converter is operated by Fundamental Frequency Switching (FFS). A new control method is developed for achieving all the necessary control aspects of HVDC system such as independent real and reactive power control, bidirectional real and reactive power control. The basic of the control method is varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive power control. Total number of transformers used in this system are reduced to half in comparison with the two-level VSCs for both active and reactive power control. The performance of the HVDC system is improved in terms of reduced harmonics level even at fundamental frequency switching. The harmonic performance of the designed converter is also studied for different value of the dead angle (β), and the optimized range of the dead angle is achieved for varying reactive power requirement. Simulation results are presented for the designed three level multipulse voltage source converters with the proposed control algorithm.


2021 ◽  
Vol 23 (07) ◽  
pp. 678-689
Author(s):  
Bilal Ahmad Ganie ◽  
◽  
Dr. (Mrs.) Lini Mathew ◽  

This study provides an adaptive control approach of VSC (voltage source converter) coupled with SPV (solar photovoltaic array), in a 3P3W (three-phase three-wire) system with three single-phase non-linear loads having Distributed Static Compensator (DSTATCOM) abilities using P and O (perturb & observe) methodology. The adaptive control technique converges quickly and has a low mean square error. For the correction of power factor and zero voltage regulation modes, the system is studied and simulated. The system’s great efficacy at high voltages is due to its one-stage structure. Grid current harmonics are significantly below the IEEE-519 norm. The suggested system is modeled and simulated with the available sim power system toolbox in MATLAB/Simulink, and the system’s behavior under different loads and environmental circumstances is confirmed.


2019 ◽  
Vol 11 (5) ◽  
pp. 1232 ◽  
Author(s):  
Md Alam ◽  
Mohammad Abido ◽  
Alaa Hussein ◽  
Ibrahim El-Amin

This paper proposes a non-superconducting bridge-type fault current limiter (BFCL) as a potential solution to the fault problems of doubly fed induction generator (DFIG) integrated voltage source converter high-voltage DC (VSC-HVDC) transmission systems. As the VSC-HVDC and DFIG systems are vulnerable to AC/DC faults, a BFCL controller is developed to insert sizeable impedance during the inception of system disturbances. In the proposed control scheme, constant capacitor voltage is maintained by the stator VSC (SVSC) controller, while current extraction or injection is achieved by rotor VSC (RVSC) controller. Current control mode-based active and reactive power controllers for an HVDC system are developed. Balanced and different unbalanced faults are applied in the system to show the effectiveness of the proposed BFCL solution. A DFIG wind-based VSC-HVDC system, BFCL, and their controllers are implemented in a real time digital simulator (RTDS). The performance of the proposed BFCL control strategy in DFIG-based VSC-HVDC system is compared with a series dynamic braking resistor (SDBR). Comparative RTDS implementation results show that the proposed BFCL control strategy is very efficient in improving system fault ride through (FRT) capability and outperforms SDBR in all cases considered.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2260
Author(s):  
Fan Cheng ◽  
Lijun Xie ◽  
Zhibing Wang

This paper investigated the characteristics of a novel type of hybrid high voltage direct current (HVdc) converter, which is composed by line commutated converter series with voltage source converter. The system and valve level control strategies are introduced, which can provide ac system voltage support. A novel filter design scheme composed by resonant filers for hybrid HVdc are also proposed, which can decrease the capacity of reactive power compensation equipment without deteriorate harmonic characteristics. The ac voltage of HVdc fluctuation level caused by transmitted power variation will be effectively reduced, with the coordination between filter design scheme and converter control. In addition, the influence of ac grid strength is also analyzed by equivalent source internal impedance represented by short circuit ratio (SCR). Finally, the +800 kV/1600 MW hybrid HVdc system connecting two ac grids under different SCR cases are studied, and the PSCAD/EMTDC simulation results have validated the effectiveness for proposed strategy.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 490 ◽  
Author(s):  
Yueping Jiang ◽  
Xue Jin ◽  
Hui Wang ◽  
Yihao Fu ◽  
Weiliang Ge ◽  
...  

Voltage source converter (VSC) has been extensively applied in renewable energy systems which can rapidly regulate the active and reactive power. This paper aims at developing a novel optimal nonlinear adaptive control (ONAC) scheme to control VSC in both rectifier mode and inverter mode. Firstly, the nonlinearities, parameter uncertainties, time-varying external disturbances, and unmodelled dynamics can be aggregated into a perturbation, which is then estimated by an extended state observer (ESO) called high-gain perturbation observer (HGPO) online. Moreover, the estimated perturbation will be fully compensated through state feedback. Besides, the observer gains and controller gains are optimally tuned by a recent emerging biology-based memetic salp swarm algorithm (MSSA), the utilization of such method can ensure a desirably satisfactory control performance. The advantage of ONAC is that even though the operation conditions are constantly changing, the control performance can still be maintained to be globally consistent. In addition, it is noteworthy that in rectifier mode only the reactive power and DC voltage are required to be measured, while in inverter mode merely the reactive power and active power have to be measured. At last, in order to verify the feasibility of ONAC in practical application, a hardware experiment is implemented.


2018 ◽  
Vol 25 (3) ◽  
pp. 685-694 ◽  
Author(s):  
Zhizheng Wu ◽  
Maotong Zhang ◽  
Zhenyou Chen ◽  
Pei Wang

The vibration caused by the multiple narrow band disturbances exists widely in the mechanical systems. In this paper, a Youla parameterized adaptive control approach is introduced for the rejection of unknown multiple narrow band disturbances. The adaptive notch filter weighted Q (Youla) parameter is adopted to the online internal model principle-based regulator, so that the disturbances can be fully attenuated and the robustness of the closed-loop system is improved. A central controller is first designed to obtain the desired baseline loop shape. Then, the controller is augmented by a notch filter weighted Q parameter to construct a series of stable controllers and the Q parameter in the stable controllers is tuned online to obtain the desired controller. The adaptive control method is applied in a data storage system to attenuate the flying height vibration and the experimental results illustrate the effectiveness of the proposed approach in rejecting unknown multiple narrow band disturbances.


Sign in / Sign up

Export Citation Format

Share Document