A new method for non-stationary signal analysis using eigenvalue decomposition of the Hankel matrix and Hilbert transform

Author(s):  
Rishi Raj Sharma ◽  
Ram Bilas Pachori
2020 ◽  
Vol 1706 ◽  
pp. 012107
Author(s):  
V Dankan Gowda ◽  
G Naveena Pai ◽  
S B Sridhara ◽  
K S Shashidhara ◽  
Gangadhara

2006 ◽  
Vol 324-325 ◽  
pp. 835-838
Author(s):  
Aleš Belšak ◽  
Jože Flašker

A crack in the tooth root, which often leads to failure in gear unit operation, is the most undesirable damage caused to gear units. This article deals with fault analyses of gear units with real damages. Numerical simulations of real operating conditions have been used in relation to the formation of those damages. A laboratory test plant has been used and a possible damage can be identified by monitoring vibrations. The influences of defects of a single-stage gear unit upon the vibrations they produce are presented. Signal analysis has been performed also in concern to a non-stationary signal, using the Time Frequency Analysis tools. Typical spectrograms, which are the result of reactions to damages, are a very reliable indication of the presence of damages.


2017 ◽  
Author(s):  
Berit Lindum Waltoft ◽  
Asger Hobolth

AbstractThe variability in population size is a key quantity for understanding the evolutionary history of a species. We present a new method, CubSFS, for estimating the changes in population size of a panmictic population from the site frequency spectrum. First, we provide a straightforward proof for the expression of the expected site frequency spectrum depending only on the population size. Our derivation is based on an eigenvalue decomposition of the instantaneous coalescent rate matrix. Second, we solve the inverse problem of determining the variability in population size from an observed SFS. Our solution is based on a cubic spline for the population size. The cubic spline is determined by minimizing the weighted average of two terms, namely (i) the goodness of fit to the SFS, and (ii) a penalty term based on the smoothness of the changes. The weight is determined by cross-validation. The new method is validated on simulated demographic histories and applied on data from nine different human populations.


2021 ◽  
Author(s):  
Mehrnaz Shokrollahi

It is estimated that 50 to 70 million Americans suffer from a chronic sleep disorder, which hinders their daily life, affects their health, and incurs a significant economic burden to society. Untreated Periodic Leg Movement (PLM) or Rapid Eye Movement Behaviour Disorder (RBD) could lead to a three to four-fold increased risk of stroke and Parkinson’s disease respectively. These risks bring about the need for less costly and more available diagnostic tools that will have great potential for detection and prevention. The goal of this study is to investigate the potentially clinically relevant but under-explored relationship of the sleep-related movement disorders of PLMs and RBD with cerebrovascular diseases. Our objective is to introduce a unique and efficient way of performing non-stationary signal analysis using sparse representation techniques. To fulfill this objective, at first, we develop a novel algorithm for Electromyogram (EMG) signals in sleep based on sparse representation, and we use a generalized method based on Leave-One-Out (LOO) to perform classification for small size datasets. In the second objective, due to the long-length of these EMG signals, the need for feature extraction algorithms that can localize to events of interest increases. To fulfill this objective, we propose to use the Non-Negative Matrix Factorization (NMF) algorithm by means of sparsity and dictionary learning. This allows us to represent a variety of EMG phenomena efficiently using a very compact set of spectrum bases. Yet EMG signals pose severe challenges in terms of the analysis and extraction of discriminant features. To achieve a balance between robustness and classification performance, we aim to exploit deep learning and study the discriminant features of the EMG signals by means of dictionary learning, kernels, and sparse representation for classification. The classification performances that were achieved for detection of RBD and PLM by means of implicating these properties were 90% and 97% respectively. The theoretical properties of the proposed approaches pertaining to pattern recognition and detection are examined in this dissertation. The multi-layer feature extraction provide strong and successful characterization and classification for the EMG non-stationary signals and the proposed sparse representation techniques facilitate the adaptation to EMG signal quantification in automating the identification process.


2014 ◽  
Vol 1014 ◽  
pp. 447-451
Author(s):  
Dong Kang He ◽  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Shu Guo ◽  
...  

As a new nonlinear and non-stationary signal analysis method,local mean decomposition (LMD) has a good adaptability. We decompose the original non-stationary acceleration vibration signals into several stationary production function (PF).But performing LMD will produce end effects which make results distorted. A hidden Markov model (HMM)-based speech recognition system for Chinese spell.After analyzing reasons for end effects of LMD in detail,a new method based on weighted matching similar waveform was proposed.Experiments in speech recognition to the production function as the training model, the more traditional identification method to identify higher rates. LMD is an effective method. It is feasible to extract the feature from speech signals with LMD.


Sign in / Sign up

Export Citation Format

Share Document