scholarly journals Determination of static voltage stability-margin of the power system prior to voltage collapse

Author(s):  
M. Jalboub ◽  
A. Ihbal ◽  
H. Rajamtani ◽  
R.A. Abd-Alhameed ◽  
A. Ihbal
Author(s):  
Ghassan Abdullah Salman ◽  
Hatim G. Abood ◽  
Mayyadah Sahib Ibrahim

The detection of potential voltage collapse in power systems is essential to maintain the voltage stability in heavy load demand. This paper proposes a method to detect weak buses in power systems using two stability indices: the voltage stability margin factor (dS/dY) and the voltage collapse prediction index (VCPI). Hence, the paper aims to improve the voltage stability of Iraqi transmission grid by allocating FACTS devices in the optimal locations and optimal sizes. Two types of FACTS are used in this paper which are Thyristor controlled series compensator (TCSC) and static var compensator (SVC). The objective function of the problem is fitted using particle swarm optimization (PSO). The proposed method is verified using simulation test on Diyala-132 kV network which is a part of the Iraqi power system. The results observed that improvement the voltage stability margin, the voltage profile of Diyala-132 kV is increased and the power losses is decreased.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Natakorn Thasnas ◽  
Apirat Siritaratiwat

Nowadays, the changes of economic, environment, and regulations are forcing the electric utilities to operate systems at maximum capacity. Therefore, the operation and control of power system to improve the system stability has been receiving a great deal of attention. This paper presents an approach for enhancing the static voltage stability margin and reducing the power losses of the system with voltage security-constrained optimal power flow (VSC-OPF) that is based on static line voltage stability indices. The control approaches incorporate the voltage stability criteria into the conventional OPF. The minimization of the summation of fast voltage stability index (FVSI), line stability index (Lmn), and line voltage stability index (LVSI) is used as the objective functions. The performance and effectiveness of the proposed control approaches are evaluated on the standard IEEE 30-bus, 57-bus, and 118-bus test systems under normal and contingency conditions. The comparison analysis is carried out with different cases including minimization of generation cost. The proposed control approaches indicate the promising results and offer efficient countermeasures against the voltage instability of the system.


Sign in / Sign up

Export Citation Format

Share Document