scholarly journals Improvement the voltage stability margin of Iraqi power system using the optimal values of FACTS devices

Author(s):  
Ghassan Abdullah Salman ◽  
Hatim G. Abood ◽  
Mayyadah Sahib Ibrahim

The detection of potential voltage collapse in power systems is essential to maintain the voltage stability in heavy load demand. This paper proposes a method to detect weak buses in power systems using two stability indices: the voltage stability margin factor (dS/dY) and the voltage collapse prediction index (VCPI). Hence, the paper aims to improve the voltage stability of Iraqi transmission grid by allocating FACTS devices in the optimal locations and optimal sizes. Two types of FACTS are used in this paper which are Thyristor controlled series compensator (TCSC) and static var compensator (SVC). The objective function of the problem is fitted using particle swarm optimization (PSO). The proposed method is verified using simulation test on Diyala-132 kV network which is a part of the Iraqi power system. The results observed that improvement the voltage stability margin, the voltage profile of Diyala-132 kV is increased and the power losses is decreased.

Author(s):  
Raja Masood Larik ◽  
Mohd. Wazir Mustafa ◽  
Manoj Kumar Panjwani

<p>Despite a tremendous development in optimal power flow (OPF), owing to the obvious complexity, non-linearity and unwieldy size of the large interconnected power systems, several problems remain unanswered in the existing methods of OPF. Seizing specific topics for maximizing voltage stability margin and its implementation, a detailed literature survey discussing the existing methods of solution and their drawbacks is presented in this research. The phenomenon of voltage collapse in power systems, methods to investigate voltage collapse, and methods related to voltage stability are briefly surveyed. Finally, the study presents a statistical method for analyzing a power system through eigenvalue analysis in relation to the singular values of the load flow Jacobian. Future study may focus on changes in theories in conjunction with large power systems.</p>


Author(s):  
ANJU GUPTA ◽  
P. R. SHARMA

This Voltage stability problems increasing day by day because of demand increase. It is very important to analyze the power system with respect to voltage stability. Location of FACTS devices is important for the enhancement of voltage stability. This paper investigates the voltage stability analysis of 14 bus systems by optimally locating Flexible AC Transmission System (FACTS) devices. Shunt and series FACTS controllers are introduced in the weakest bus and its effectiveness is assessed by comparing voltage profile and loading margins enhancement. It is shown that best location for static voltage stability margin is the “weakest bus” of the system. Continuation power flow (CPF) is done with PSAT (power system stability analysis Toolbox).


2019 ◽  
Vol 14 (1) ◽  
pp. 5-11
Author(s):  
S. Rajasekaran ◽  
S. Muralidharan

Background: Increasing power demand forces the power systems to operate at their maximum operating conditions. This leads the power system into voltage instability and causes voltage collapse. To avoid this problem, FACTS devices have been used in power systems to increase system stability with much reduced economical ratings. To achieve this, the FACTS devices must be placed in exact location. This paper presents Firefly Algorithm (FA) based optimization method to locate these devices of exact rating and least cost in the transmission system. Methods: Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) are the FACTS devices used in the proposed methodology to enhance the voltage stability of power systems. Considering two objectives of enhancing the voltage stability of the transmission system and minimizing the cost of the FACTS devices, the optimal ratings and cost were identified for the devices under consideration using Firefly algorithm as an optimization tool. Also, a model study had been done with four different cases such as normal case, line outage case, generator outage case and overloading case (140%) for IEEE 14,30,57 and 118 bus systems. Results: The optimal locations to install SVC and TCSC in IEEE 14, 30, 57 and 118 bus systems were evaluated with minimal L-indices and cost using the proposed Firefly algorithm. From the results, it could be inferred that the cost of installing TCSC in IEEE bus system is slightly higher than SVC.For showing the superiority of Firefly algorithm, the results were compared with the already published research finding where this problem was solved using Genetic algorithm and Particle Swarm Optimization. It was revealed that the proposed firefly algorithm gives better optimum solution in minimizing the L-index values for IEEE 30 Bus system. Conclusion: The optimal placement, rating and cost of installation of TCSC and SVC in standard IEEE bus systems which enhanced the voltage stability were evaluated in this work. The need of the FACTS devices was also tested during the abnormal cases such as line outage case, generator outage case and overloading case (140%) with the proposed Firefly algorithm. Outputs reveal that the recognized placement of SVC and TCSC reduces the probability of voltage collapse and cost of the devices in the transmission lines. The capability of Firefly algorithm was also ensured by comparing its results with the results of other algorithms.


Sign in / Sign up

Export Citation Format

Share Document