A state space approach to determining solutions to Maxwell's equations for a one-dimensional dispersive medium

Author(s):  
J.E. Gray ◽  
R.E. Helmick
Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4631 ◽  
Author(s):  
Wu ◽  
Xu

In this work, we focus on sparse representation of two-dimensional (2-D) radar signatures for man-made targets. Based on the damped exponential (DE) model, a 2-D augmented state–space approach (ASSA) is proposed to estimate the parameters of scattering centers on complex man-made targets, i.e., the complex amplitudes and the poles in down-range and aspect dimensions. An augmented state–space approach is developed for pole estimation of down-range dimension. Multiple-range search strategy, which applies one-dimensional (1-D) state–space approach (SSA) to the 1-D data for each down-range cell, is used to alleviate the pole-pairing problem occurring in previous algorithms. Effectiveness of the proposed approach is verified by the numerical and measured inverse synthetic aperture radar (ISAR) data.


2009 ◽  
Vol 87 (8) ◽  
pp. 867-878 ◽  
Author(s):  
Magdy A. Ezzat ◽  
A. S. El-Karamany ◽  
A.A. Bary

A model of the equations of generalized magneto-thermoelasticity for perfectly conducting isotropic media is given. The formulation is applied to the generalized thermoelasticity theories: Green–Naghdi of type II and type III as well as to the dynamic coupled theory. The state space approach is adopted for the solution of one-dimensional problems in the absence of heat sources with time-dependent heating on the boundary. The Laplace-transform technique is used. Numerical results are given and illustrated graphically employing numerical method for the inversion of the Laplace transforms. Comparisons are made with the results predicted by the three theories.


2020 ◽  
Vol 9 (11) ◽  
pp. 9769-9780
Author(s):  
S.G. Khavale ◽  
K.R. Gaikwad

This paper is dealing the modified Ohm's law with the temperature gradient of generalized theory of magneto-thermo-viscoelastic for a thermally, isotropic and electrically infinite material with a spherical region using fractional order derivative. The general solution obtained from Laplace transform, numerical Laplace inversion and state space approach. The temperature, displacement and stresses are obtained and represented graphically with the help of Mathcad software.


Sign in / Sign up

Export Citation Format

Share Document